Beispiel #1
0
 def __pow__(self, other):
     # avoid cyclic import problems
     from linalg import inverse
     if not isinstance(other, int):
         raise ValueError('only integer exponents are supported')
     if not self.__rows == self.__cols:
         raise ValueError('only powers of square matrices are defined')
     n = other
     if n == 0:
         return eye(self.__rows)
     if n < 0:
         n = -n
         neg = True
     else:
         neg = False
     i = n
     y = 1
     z = self.copy()
     while i != 0:
         if i % 2 == 1:
             y = y * z
         z = z*z
         i = i // 2
     if neg:
         y = inverse(y)
     return y
  def test_inverse_random(self):
    T = np.random.randn(100, 100)

    actual = inverse(T)
    expected = LA.inv(T)

    self.assertTrue(np.allclose(actual, expected))
Beispiel #3
0
 def __pow__(self, other):
     # avoid cyclic import problems
     from linalg import inverse
     if not isinstance(other, int):
         raise ValueError('only integer exponents are supported')
     if not self.__rows == self.__cols:
         raise ValueError('only powers of square matrices are defined')
     n = other
     if n == 0:
         return eye(self.__rows)
     if n < 0:
         n = -n
         neg = True
     else:
         neg = False
     i = n
     y = 1
     z = self.copy()
     while i != 0:
         if i % 2 == 1:
             y = y * z
         z = z*z
         i = i // 2
     if neg:
         y = inverse(y)
     return y
  def test_inverse_simple(self):
    T = np.array([
      [2, 1, 1, 0],
      [4, 3, 3, 1],
      [8, 7, 9, 5],
      [6, 7, 9, 8]
    ])

    actual = inverse(T)
    expected = LA.inv(T)

    self.assertTrue(np.allclose(actual, expected))
Beispiel #5
0
    def onWheel(self, ev):
        cx, cy = self.canvas.canvasxy(ev.x, ev.y)

        sf = 1.1
        if (ev.delta < 0): sf = 1 / sf

        # scale all objects on canvas
        self.canvas.zoom(cx, cy, sf)

        if self.img:
            imgsc = tuple(int(sf * c) for c in self.simg.size)
            ox, oy = self.canvas.canvasxy(0, 0)
            cw, ch = self.canvas.winfo_reqwidth(), self.canvas.winfo_reqheight(
            )
            cow, coh = self.canvas.canvasxy(cw, ch)

            if imgsc[0] > cw and imgsc[1] > ch:
                isz = (cw, ch)
            else:
                isz = imgsc

            xf = self.canvas.xform()
            xf = deepcopy(xf)

            xf = inverse(xf)
            #self.simg = self.img.transform(self.img.size,Image.AFFINE,data=(xf[0][0],xf[0][1],xf[0][3],xf[1][0],xf[1][1],xf[1][3]))
            self.simg = self.img.transform(imgsc,
                                           Image.AFFINE,
                                           data=(xf[0][0], 0, 0, 0, xf[1][1],
                                                 0))

            self.pimg = ImageTk.PhotoImage(self.simg)
            #self.canvas.itemconfig(self.imgcid, image = self.pimg)
            x, y = self.canvas.coords(self.imgcid)
            print(x, y, self.img.size, ox, oy, cow, coh)
            if self.imgcid:
                self.canvas.delete(self.imgcid)
            self.imgcid = self.canvas.create_image(0,
                                                   0,
                                                   image=self.pimg,
                                                   anchor=tk.NW)
            sys.stdout.flush()
Beispiel #6
0
import numpy as np
import numpy.linalg as LA

from linalg.cholesky import Cholesky
from linalg import inverse

if __name__ == "__main__":
    A = np.array([
        [0.01, 0.010001, .5],
        [0.02, 0.020001, 0.],
        [0.03, 0.030001, 0.5],
    ])
    T = A.T @ A
    b = np.array([.1, 2., .3])

    actual = Cholesky(T).solve(b)
    expected = LA.solve(T, b)
    diff = np.linalg.norm(actual - expected)
    cond = np.linalg.norm(A) * np.linalg.norm(inverse(A))
    print("Condition number {:.2f} - solution difference: {}".format(
        cond, diff))

    A = np.random.randn(3, 3)
    T = A.T @ A
    actual = Cholesky(T).solve(b)
    expected = LA.solve(T, b)
    diff = np.linalg.norm(actual - expected)
    cond = np.linalg.norm(A) * np.linalg.norm(inverse(A))
    print("Condition number {:.2f} - solution difference: {}".format(
        cond, diff))
Beispiel #7
0
 def c2o(self, cx, cy):
     c2om = inverse(self.OtoC)
     o = vapply(c2om, (cx, cy, 0, 1))
     return o[0], o[1]
Beispiel #8
0
#!/usr/bin/env python3
import linalg
if __name__ == '__main__':
    resp = input(
        "What would you like to do?\n1)Find an inverse\n2)Find a determinant\n3)Solve a linear system of equations"
        "\n4)Multiply two matrices\n5)Find LU Decomposition\n6)Find dominant eigenvalue with accompanying eigenvector\n"
    )
    if resp == '1':
        linalg.print_matrix(linalg.inverse(linalg.input_matrix()))
    elif resp == '2':
        print(linalg.determinant(linalg.input_matrix()))
    elif resp == '3':
        print_matrix(linalg.linear_system())
    elif resp == '4':
        linalg.print_matrix(
            linalg.product(
                linalg.input_matrix(prompt='Input left matrix in order'),
                linalg.input_matrix(prompt='Input right matrix in order')))
    elif resp == '5':
        lu = linalg.lu_decomposition(linalg.input_matrix())
        linalg.print_matrix(lu[0])
        linalg.print_matrix(lu[1])
    elif resp == '6':
        lu = linalg.lu_decomposition(linalg.input_matrix())
        value, vector = linalg.power_method(
            lu, int(input('How many iterations?\n')),
            linalg.input_matrix((len(lu[0]), 1), 'Input an estimate'))
        print('Eigenvalue: {}\nEigenvector: {}'.format(
            value, [row[0] for row in vector]))
    else:
        print('selection not valid')