Beispiel #1
0
def validationCurve(X, y, Xval, yval):
    #VALIDATIONCURVE Generate the train and validation errors needed to
    #plot a validation curve that we can use to select lambda
    #   [lambda_vec, error_train, error_val] = ...
    #       VALIDATIONCURVE(X, y, Xval, yval) returns the train
    #       and validation errors (in error_train, error_val)
    #       for different values of lambda. You are given the training set (X,
    #       y) and validation set (Xval, yval).
    #

    # Selected values of lambda (you should not change this)
    lambda_vec = np.array([0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10])

    # You need to return these variables correctly.
    error_train = np.zeros((len(lambda_vec), 1))
    error_val = np.zeros((len(lambda_vec), 1))

    # ====================== YOUR CODE HERE ======================
    # Instructions: Fill in this function to return training errors in
    #               error_train and the validation errors in error_val. The
    #               vector lambda_vec contains the different lambda parameters
    #               to use for each calculation of the errors, i.e,
    #               error_train(i), and error_val(i) should give
    #               you the errors obtained after training with
    #               lambda = lambda_vec(i)
    #
    # Note: You can loop over lambda_vec with the following:
    #
    #       for i = 1:length(lambda_vec)
    #           lambda = lambda_vec(i);
    #           # Compute train / val errors when training linear
    #           # regression with regularization parameter lambda
    #           # You should store the result in error_train(i)
    #           # and error_val(i)
    #           ....
    #
    #       end
    #
    #

    for i in range(len(lambda_vec)):

        lambda_val = lambda_vec[i]

        # learn theta parameters with current lambda value
        theta = trainLinearReg(X, y, lambda_val)

        # fill in error_train[i] and error_val[i]
        #   note that for error computation, we set lambda = 0 in the last argument
        error_train[i] = linearRegCostFunction(X, y, theta, 0)
        error_val[i] = linearRegCostFunction(Xval, yval, theta, 0)
    # =========================================================================

    return lambda_vec, error_train, error_val
Beispiel #2
0
 def costFunc(theta):
     return linearRegCostFunction(X, y, theta, lambda_val, True)
Beispiel #3
0
# Plot training data
plt.scatter(X, y, marker='x', s=60, color='r', lw=1.5)
plt.ylabel('Water flowing out of the dam (y)')  # Set the y-axis label
plt.xlabel('Change in water level (x)')  # Set the x-axis label
plt.show()

input('Program paused. Press <Enter> to continue...')

## =========== Part 2: Regularized Linear Regression Cost =============
#  You should now implement the cost function for regularized linear
#  regression.
#

theta = np.array([1, 1])
J = linearRegCostFunction(np.column_stack((np.ones(m), X)), y, theta, 1)

print(
    'Cost at theta = [1  1]: %f \n(this value should be about 303.993192)\n' %
    J)

input('Program paused. Press <Enter> to continue...')

## =========== Part 3: Regularized Linear Regression Gradient =============
#  You should now implement the gradient for regularized linear
#  regression.
#

theta = np.array([1, 1])
J, grad = linearRegCostFunction(np.column_stack((np.ones(m), X)), y, theta, 1,
                                True)
Beispiel #4
0
def learningCurve(X, y, Xval, yval, Lambda):
    """returns the train and
    cross validation set errors for a learning curve. In particular,
    it returns two vectors of the same length - error_train and
    error_val. Then, error_train(i) contains the training error for
    i examples (and similarly for error_val(i)).
    In this function, you will compute the train and test errors for
    dataset sizes from 1 up to m. In practice, when working with larger
    datasets, you might want to do this in larger intervals.
    """

    # Number of training examples
    m, _ = X.shape

    # You need to return these values correctly
    error_train = np.zeros(m)
    error_val = np.zeros(m)

    # ====================== YOUR CODE HERE ======================
    # Instructions: Fill in this function to return training errors in
    #               error_train and the cross validation errors in error_val.
    #               i.e., error_train(i) and
    #               error_val(i) should give you the errors
    #               obtained after training on i examples.
    #
    # Note: You should evaluate the training error on the first i training
    #       examples (i.e., X(1:i, :) and y(1:i)).
    #
    #       For the cross-validation error, you should instead evaluate on
    #       the _entire_ cross validation set (Xval and yval).
    #
    # Note: If you are using your cost function (linearRegCostFunction)
    #       to compute the training and cross validation error, you should
    #       call the function with the lambda argument set to 0.
    #       Do note that you will still need to use lambda when running
    #       the training to obtain the theta parameters.
    #
    # Hint: You can loop over the examples with the following:
    #
    #       for i = 1:m
    #           # Compute train/cross validation errors using training examples
    #           # X(1:i, :) and y(1:i), storing the result in
    #           # error_train(i) and error_val(i)
    #           ....
    #
    #

    # ---------------------- Sample Solution ----------------------

    for i in range(1, m + 1):

        # define training variables for this loop
        X_train = X[:i]
        y_train = y[:i]

        # learn theta parameters with current X_train and y_train
        theta = trainLinearReg(X_train, y_train, Lambda)

        # fill in error_train(i) and error_val(i)
        #   note that for error computation, we set lambda_val = 0 in the last argument
        error_train[i - 1] = linearRegCostFunction(X_train, y_train, theta, 0)
        error_val[i - 1] = linearRegCostFunction(Xval, yval, theta, 0)

# -------------------------------------------------------------------------

# =========================================================================

    return error_train, error_val