Beispiel #1
0
    def read_file(self, filepath, verbose_mode):
        A = []
        c = []
        b = []
        signals = []
        non_negativity = []
        try:
            file_pointer = open(filepath, 'r')
        except IOError:
            print("Error: File Doesn't Exists!")
            return -1
        num_variables = int(file_pointer.readline())
        num_constraints = int(file_pointer.readline())
        non_negativity = file_pointer.readline().replace("\r\n", "").split(" ")
        c = file_pointer.readline().replace("\r\n", "").split(" ")

        i = 0
        line = file_pointer.readline()
        while (line):
            line = line.split(" ")
            b.append(float(line[len(line) - 1]))
            signals.append(line[len(line) - 2])
            A.append([line[k] for k in (range(len(line) - 2))])
            line = file_pointer.readline()
            i += 1
        file_pointer.close()

        return linear_programming.LinearProgramming(num_variables,
                                                    num_constraints, A, b, c,
                                                    signals, non_negativity,
                                                    verbose_mode)
Beispiel #2
0
 def setUp(self):
     self.A1 = matrix.Matrix([
         [3, 2, 1],
         [2, 5, 3]
     ])
     self.b1 = [10, 15]
     self.c1 = [2, 3, 4]
     self.lp1 = linear_programming.LinearProgramming(self.c1, self.A1, self.b1)
Beispiel #3
0
 def test_unfeasible(self):
     A = matrix.Matrix([
         [1, 1, 1],
         [-1, -1, 1]
     ])
     b = [-5, -5]
     c = [-1, 2, -2]
     lp = linear_programming.LinearProgramming(c, A, b)
     result = lp.run()
     self.assertEqual(result.status, "UNFEASIBLE")
Beispiel #4
0
 def test_unbounded(self):
     A = matrix.Matrix([
         [-1, 1],
         [1, -2]
     ])
     b = [1, 2]
     c = [2, 1]
     lp = linear_programming.LinearProgramming(c, A, b)
     result = lp.run()
     # self.assertAlmostEqual(result.value, 4)
     # self.assertAlmostEqual(result.x_values[0]*c[0]+result.x_values[1]*c[1], 4)
     self.assertEqual(result.status, "UNBOUNDED")
Beispiel #5
0
 def test_success(self):
     A = matrix.Matrix([
         [2, -1],
         [1, 2],
         [-1, 2]
     ])
     b = [4, 9, 3]
     c = [2, 5]
     lp = linear_programming.LinearProgramming(c, A, b)
     result = lp.run()
     self.assertAlmostEqual(result.value, 21)
     self.assertAlmostEqual(result.x_values[0]*c[0]+result.x_values[1]*c[1], 21)
     self.assertEqual(result.status, "SUCCESSFUL")
     for i in range(len(b)):
         s = 0
         for j in range(len(result.x_values)):
             s += result.x_values[j]*A.elements[i][j]
         self.assertLessEqual(round(s,7), b[i])
Beispiel #6
0
 def test_degenerate(self):
     A = matrix.Matrix([
         [3, 1],
         [1, -1],
         [0, 1]
     ])
     b = [6, 2, 3]
     c = [2, 1]
     lp = linear_programming.LinearProgramming(c, A, b)
     result = lp.run()
     self.assertAlmostEqual(result.value, 5)
     self.assertAlmostEqual(result.x_values[0]*c[0]+result.x_values[1]*c[1], 5)
     self.assertEqual(result.status, "SUCCESSFUL")
     for i in range(len(b)):
         s = 0
         for j in range(len(result.x_values)):
             s += result.x_values[j]*A.elements[i][j]
         self.assertLessEqual(s, b[i])
Beispiel #7
0
    def test_repr(self):
        primal = """max (-1*x0)+(2*x1)+(-2*x2)
(1*x0)+(1*x1)+(-1*x2) <= 5
(-1*x0)+(-1*x1)+(1*x2) <= -5
x0, x1, x2 >= 0"""
        dual = """min (5*y0)+(-5*y1)
(1*y0)+(-1*y1) >= -1
(1*y0)+(-1*y1) >= 2
(-1*y0)+(1*y1) >= -2
y0, y1 >= 0"""
        A = matrix.Matrix([
            [1, 1, -1],
            [-1, -1, 1]
        ])
        b = [5, -5]
        c = [-1, 2, -2]
        lp = linear_programming.LinearProgramming(c, A, b)
        self.assertEqual(str(lp), primal)
        self.assertEqual(lp.dual(), dual)
Beispiel #8
0
 def test_negative_b(self):
     A = matrix.Matrix([
         [-1,0,-1,0,0],
         [-1,0,0,-1,0],
         [-1,-1,0,0,-1],
         [0,-1,0,0,0],
         [0,-1,0,0,0]
     ]).transposed()
     b = [-1,-1,-1,-1,-1]
     c = [-1,-1,-1,-1,-1]
     lp = linear_programming.LinearProgramming(c, A, b)
     result = lp.run()
     self.assertAlmostEqual(result.value, -3)
     s = 0
     for j in range(len(result.x_values)):
         s += result.x_values[j]*c[0]
     self.assertAlmostEqual(s, -3)
     self.assertEqual(result.status, "SUCCESSFUL")
     for i in range(len(b)):
         s = 0
         for j in range(len(result.x_values)):
             s += result.x_values[j]*A.elements[i][j]
         self.assertLessEqual(s, b[i])