Beispiel #1
0
    def __init__(self, train_cfg, ps_params_dict, model_task_name, logdir,
                 tf_master, **kwargs):
        """Construct an ExecutorTpu BaseRunner.

    Args:
      train_cfg: SingleTaskModelParams or MultiTaskModelParams
      ps_params_dict: A dict of top-level task name -> ProgramSchedule params,
        if train_cfg is a SingleTaskModelParams, we expect only one entry.
      model_task_name: An override for multi-task models, currently unused.
      logdir:  String path to the log directory to output to.
      tf_master: String path to the master job, e.g. 'local'.
      **kwargs: keyword args to pass through to BaseRunner.
    """
        super().__init__(train_cfg, model_task_name, logdir, tf_master,
                         **kwargs)

        data_parallelism = self._cluster.num_splits_per_client

        assert data_parallelism
        num_devices_per_split = self._cluster.num_devices_per_split
        tf.logging.info('data_parallelism: %d, num_devices_per_split: %d',
                        data_parallelism, num_devices_per_split)

        self.task_scheduler = None
        self._checkpoint_dir = os.path.join(logdir, 'train')

        self._variable_renaming_rules = []

        self._ml_perf = None

        # If this is a multi-task model, grab the params for the TaskScheduler.
        if issubclass(train_cfg.cls, base_model.SingleTaskModel):
            tf.logging.info('single_task_model')
            assert len(ps_params_dict) == 1
            self._model_task_name = list(ps_params_dict.keys())[0]
            self._single_task_mode = True
        elif issubclass(train_cfg.cls, base_model.MultiTaskModel):
            tf.logging.info('multi_task_model')

            if issubclass(train_cfg.cls,
                          multitask_model.RegExSharedVariableModel):
                self._variable_renaming_rules = train_cfg.variable_renaming_rules

            if train_cfg.task_schedule is None:
                task_schedule_params = task_scheduler.ConstantScheduler.Params(
                )
                task_schedule_params.task_probs = sorted(
                    list(train_cfg.task_probs.IterParams()))
            else:
                task_schedule_params = train_cfg.task_schedule
            self.task_scheduler = task_schedule_params.Instantiate()
            self._single_task_mode = False
        else:
            tf.logging.fatal(
                'Model %s is not a sub-class of SingleTaskModel or MultiTaskModel',
                train_cfg.cls)

        tf.logging.info('train_cfg.cls: %s', train_cfg.cls)

        self._WriteToLog(train_cfg.ToText(), self._checkpoint_dir,
                         'trainer_params.txt')
        if self._ml_perf is not None:
            self._ml_perf_log = True
            mlp_log.mlperf_print(key='benchmark',
                                 value=self._ml_perf.benchmark_name)
        else:
            self._ml_perf_log = False

        # BaseRunner legacy
        self.enqueue_ops = None

        train_cfg = self.params

        @py_utils.RetryOnTransientTfError()
        def _WaitTillInit(job=None):
            """Wait until the model is ready."""
            try:
                # tpu.initialize_system() is called with None as embedding_config, as
                # embedding_config is not available yet. Later in _Loop, it is called
                # with the correct embedding_config. Since it cannot be called twice in
                # the same graph with different embedding_config, we use a dummy_graph
                # here.
                dummy_graph = tf.Graph()
                with dummy_graph.as_default():
                    tpu_initialize_system_op = tf.tpu.initialize_system(
                        embedding_config=None, job=job)

                with self._GetSession(graph=dummy_graph) as sess:
                    topology = sess.run(tpu_initialize_system_op)

                if train_cfg.train.tpu_device_order_mode is None:
                    device_assignment = device_assignment_lib.device_assignment(
                        topology,
                        computation_shape=py_utils.ComputationShape(
                            num_devices_per_split, topology),
                        num_replicas=data_parallelism)
                else:
                    device_assignment = device_assignment_lib.device_assignment(
                        topology,
                        computation_shape=py_utils.ComputationShape(
                            num_devices_per_split, topology),
                        num_replicas=data_parallelism,
                        device_order_mode=train_cfg.train.tpu_device_order_mode
                    )
                py_utils.SetTpuDeviceAssignment(device_assignment, job)
                tf.logging.info('device_assignment.core_assignment: %s',
                                str(device_assignment.core_assignment))
                tf.logging.info(
                    'device_assignment.topology.device_coordinates: %s',
                    str(device_assignment.topology.device_coordinates))
            except py_utils.transient_tf_errors as e:
                tf.logging.info('TPU initialization failed: %s', e)
                raise

        if self._ml_perf_log:
            mlp_log.mlperf_print(key='init_start', value=None)
        if len(self._cluster.all_worker_names) > 1:
            for worker in self._cluster.all_worker_names:
                _WaitTillInit(worker)
        else:
            _WaitTillInit(None)

        shared_model = self._MaybeConstructSharedModel(train_cfg)

        self._program_schedule_dict = {}
        self._programs = []

        for task_string, program_schedule_params in ps_params_dict.items():
            program_schedule_params.logdir = logdir
            program_schedule_params.num_splits_per_client = data_parallelism
            program_schedule_params.task_name = task_string
            # If the model was created above, we'll inject it here as a shared_model.
            ps = program_schedule_params.Instantiate(shared_model=shared_model,
                                                     tf_master=self._tf_master)
            self._program_schedule_dict[task_string] = ps
            tf.logging.info('program_schedule_params: %s',
                            program_schedule_params.ToText())
            self._programs += ps.Programs()
            if program_schedule_params.ml_perf.benchmark_name is not None:
                self._ml_perf = program_schedule_params.ml_perf

        tf.logging.info('num_programs: %d', len(self._programs))

        with self._graph.as_default(), tf.container(self._container_id):
            with self._cluster, tf.device(self._cluster.GetPlacer()):
                with py_utils.VariableRenameScope(
                        self._variable_renaming_rules):
                    _ = py_utils.GetOrCreateGlobalStepVar()
                    for program in self._programs:
                        program.BuildTpuSubgraph()
                        py_utils.ClearTpuSummaryTensors()

                self._initialize_tables = tf.tables_initializer()
                self._initialize_local_vars = tf.local_variables_initializer()
                self._initialize_global_vars = tf.global_variables_initializer(
                )

                for program in self._programs:
                    program.SetStatusMessageFn(self._SetStatusMessage)
                    program.CreateCheckpointer(
                        init_op=self._initialize_global_vars)

                self.save_only_checkpointer = checkpointer.Checkpointer(
                    self._checkpoint_dir,
                    model=None,
                    init_op=self._initialize_global_vars,
                    train_params=train_cfg.train,
                    save_only=True)

            self._load_ops = tf.get_collection(py_utils.TPU_EMBEDDING_LOAD_OPS)
            self._retrieve_ops = tf.get_collection(
                py_utils.TPU_EMBEDDING_RETRIEVE_OPS)
            tpu_embedding_collection = tf.get_collection(
                py_utils.TPU_EMBEDDING)
            self._tpu_embedding = (tpu_embedding_collection[0]
                                   if tpu_embedding_collection else None)
            tf.io.write_graph(self._graph.as_graph_def(), self._checkpoint_dir,
                              'train.pbtxt')
Beispiel #2
0
    def __init__(self, train_cfg, ps_params_dict, model_task_name, logdir,
                 tf_master, **kwargs):
        """Construct an ExecutorTpu BaseRunner.

    Args:
      train_cfg: SingleTaskModelParams or MultiTaskModelParams
      ps_params_dict: A dict of top-level task name -> ProgramSchedule params,
          if train_cfg is a SingleTaskModelParams, we expect only one entry.
      model_task_name: An override for multi-task models, currently unused.
      logdir:  String path to the log directory to output to.
      tf_master: String path to the master job, e.g. 'local'.
      **kwargs: keyword args to pass through to BaseRunner.
    """
        super().__init__(train_cfg, model_task_name, logdir, tf_master,
                         **kwargs)

        self._cluster_def = self._cluster.worker_cluster_def

        # There is a single Executor task
        assert self._cluster.num_replicas == 1
        data_parallelism = self._cluster.num_splits_per_client

        assert data_parallelism
        num_devices_per_split = self._cluster.num_devices_per_split
        tf.logging.info('data_parallelism: %d, num_devices_per_split: %d',
                        data_parallelism, num_devices_per_split)

        self.task_scheduler = None
        self._checkpoint_dir = os.path.join(logdir, 'train')

        self._variable_renaming_rules = []

        self._ml_perf = None

        # If this is a multi-task model, grab the params for the TaskScheduler.
        if issubclass(train_cfg.cls, base_model.SingleTaskModel):
            tf.logging.info('single_task_model')
            assert len(ps_params_dict) == 1
            self._model_task_name = list(ps_params_dict.keys())[0]
            self._single_task_mode = True
        elif issubclass(train_cfg.cls, base_model.MultiTaskModel):
            tf.logging.info('multi_task_model')

            if issubclass(train_cfg.cls,
                          multitask_model.RegExSharedVariableModel):
                self._variable_renaming_rules = train_cfg.variable_renaming_rules

            if train_cfg.task_schedule is None:
                task_schedule_params = task_scheduler.ConstantScheduler.Params(
                )
                task_schedule_params.task_probs = sorted(
                    list(train_cfg.task_probs.IterParams()))
            else:
                task_schedule_params = train_cfg.task_schedule
            self.task_scheduler = task_schedule_params.Instantiate()
            self._single_task_mode = False
        else:
            tf.logging.fatal(
                'Model %s is not a sub-class of SingleTaskModel or MultiTaskModel',
                train_cfg.cls)

        tf.logging.info('train_cfg.cls: %s', train_cfg.cls)

        self._WriteToLog(train_cfg.ToText(), self._checkpoint_dir,
                         'trainer_params.txt')
        if self._ml_perf is not None:
            self._ml_perf_log = True
            mlp_log.mlperf_print(key='benchmark',
                                 value=self._ml_perf.benchmark_name)
        else:
            self._ml_perf_log = False

        # BaseRunner legacy
        self.enqueue_ops = None

        @py_utils.RetryOnTransientTfError()
        def _WaitTillInit():
            """Wait until the model is ready."""
            try:
                with self._graph.as_default(), self._GetSession(
                        cluster_def=self._cluster_def,
                        disable_meta_optimizer=FLAGS.
                        disable_meta_optimizer_in_executor) as sess:
                    topology = sess.run(
                        tf.tpu.initialize_system(embedding_config=None,
                                                 job=None))
                    device_assignment = device_assignment_lib.device_assignment(
                        topology,
                        computation_shape=py_utils.ComputationShape(
                            num_devices_per_split, topology),
                        num_replicas=data_parallelism)
                    py_utils.SetTpuDeviceAssignment(device_assignment)
                    tf.logging.info('device_assignment.core_assignment: %s',
                                    str(device_assignment.core_assignment))
                    tf.logging.info(
                        'device_assignment.topology.device_coordinates: %s',
                        str(device_assignment.topology.device_coordinates))
            except py_utils.transient_tf_errors as e:
                tf.logging.info('TPU initialization failed: %s', e)
                raise

        if self._ml_perf_log:
            mlp_log.mlperf_print(key='init_start', value=None)
        _WaitTillInit()

        train_cfg = self.params
        shared_model = self._MaybeConstructSharedModel(train_cfg)

        self._program_schedule_dict = {}
        self._programs = []

        for task_string, program_schedule_params in ps_params_dict.items():
            program_schedule_params.logdir = logdir
            program_schedule_params.num_splits_per_client = data_parallelism
            program_schedule_params.task_name = task_string
            # If the model was created above, we'll inject it here as a shared_model.
            ps = program_schedule_params.Instantiate(shared_model=shared_model)
            self._program_schedule_dict[task_string] = ps
            tf.logging.info('program_schedule_params: %s',
                            program_schedule_params.ToText())
            self._programs += ps.Programs()
            if program_schedule_params.ml_perf.benchmark_name is not None:
                self._ml_perf = program_schedule_params.ml_perf

        tf.logging.info('num_programs: %d', len(self._programs))

        with self._graph.as_default(), tf.container(self._container_id):
            with self._cluster, tf.device(
                    self._cluster.job_spec.name if not FLAGS.
                    cluster_placer_in_executor else self._cluster.GetPlacer()):
                with py_utils.VariableRenameScope(
                        self._variable_renaming_rules):
                    _ = py_utils.GetOrCreateGlobalStepVar()
                    for program in self._programs:
                        program.BuildTpuSubgraph()
                        py_utils.ClearTpuSummaryTensors()
                for program in self._programs:
                    program.SetStatusMessageFn(self._SetStatusMessage)
                    program.CreateCheckpointer()
                self._initialize_tables = tf.tables_initializer()
                self._initialize_local_vars = tf.local_variables_initializer()

                self.save_only_checkpointer = checkpointer.Checkpointer(
                    self._checkpoint_dir,
                    model=None,
                    train_params=train_cfg.train,
                    save_only=True)
Beispiel #3
0
    def __init__(self, train_cfg, ps_params_dict, *args, **kwargs):
        """Construct an ExecutorTpu BaseRunner.

    Args:
      train_cfg: SingleTaskModelParams or MultiTaskModelParams
      ps_params_dict: A dict of top-level task name -> ProgramSchedule params,
        if train_cfg is a SingleTaskModelParams, we expect only one entry.
      *args: List args to pass through to BaseRunner.
      **kwargs: keyword args to pass through to BaseRunner.
    """
        if py_utils.IsEagerMode():
            assert tf.executing_eagerly()
            tf.logging.info(f'FLAGS.tf_master: {FLAGS.tf_master}')

            # Connect to the TPU runtime.
            resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
                FLAGS.tf_master, job_name=FLAGS.worker_job[len('/job:'):])
            tf.config.experimental_connect_to_cluster(resolver)

        super().__init__(train_cfg, *args, **kwargs)

        data_parallelism = self._cluster.num_splits_per_client
        assert data_parallelism
        num_devices_per_split = self._cluster.num_devices_per_split
        tf.logging.info('data_parallelism: %d, num_devices_per_split: %d',
                        data_parallelism, num_devices_per_split)

        self.task_scheduler = None
        self._checkpoint_dir = os.path.join(self._logdir, 'train')

        self._variable_renaming_rules = []

        self._ml_perf = None

        # If this is a multi-task model, grab the params for the TaskScheduler.
        if issubclass(train_cfg.cls, base_model.SingleTaskModel):
            tf.logging.info('single_task_model')
            assert len(ps_params_dict) == 1
            self._model_task_name = list(ps_params_dict.keys())[0]
            self._single_task_mode = True
        elif issubclass(train_cfg.cls, base_model.MultiTaskModel):
            tf.logging.info('multi_task_model')

            if issubclass(train_cfg.cls,
                          multitask_model.RegExSharedVariableModel):
                self._variable_renaming_rules = train_cfg.variable_renaming_rules

            if train_cfg.task_schedule is None:
                task_schedule_params = task_scheduler.ConstantScheduler.Params(
                )
                task_schedule_params.task_probs = sorted(
                    list(train_cfg.task_probs.IterParams()))
            else:
                task_schedule_params = train_cfg.task_schedule
            self.task_scheduler = task_schedule_params.Instantiate()
            self._single_task_mode = False
        else:
            tf.logging.fatal(
                'Model %s is not a sub-class of SingleTaskModel or MultiTaskModel',
                train_cfg.cls)

        tf.logging.info('train_cfg.cls: %s', train_cfg.cls)

        self._WriteToLog(train_cfg.ToText(), self._checkpoint_dir,
                         'trainer_params.txt')
        self._WriteToLog(
            text_format.MessageToString(train_cfg.ToProto(), as_utf8=True),
            self._checkpoint_dir, 'trainer_params.pbtxt')
        if self._ml_perf is not None:
            self._ml_perf_log = True
            mlp_log.mlperf_print(key='benchmark',
                                 value=self._ml_perf.benchmark_name)
        else:
            self._ml_perf_log = False

        train_cfg = self.params

        @py_utils.RetryOnTransientTfError()
        def _WaitTillInit(job=None):
            """Wait until the model is ready."""
            try:
                if py_utils.IsEagerMode():
                    topology = tf.tpu.experimental.initialize_tpu_system(
                        resolver)
                else:
                    # tpu.initialize_system() is called with None as embedding_config, as
                    # embedding_config is not available yet. Later in _Loop, it is called
                    # with the correct embedding_config. Since it cannot be called twice
                    # in the same graph with different embedding_config, we use a
                    # dummy_graph here.
                    dummy_graph = tf.Graph()
                    with dummy_graph.as_default():
                        tpu_initialize_system_op = tf.tpu.initialize_system(
                            embedding_config=None, job=job)

                    with self._GetSession(graph=dummy_graph) as sess:
                        topology = sess.run(tpu_initialize_system_op)

                if train_cfg.train.tpu_computation_shape is None:
                    computation_shape = py_utils.ComputationShape(
                        num_devices_per_split, topology)
                else:
                    computation_shape = train_cfg.train.tpu_computation_shape
                    assert num_devices_per_split == np.prod(computation_shape)

                if train_cfg.train.tpu_device_order_mode is None:
                    self.device_assignment = device_assignment_lib.device_assignment(
                        topology,
                        computation_shape=computation_shape,
                        num_replicas=data_parallelism)
                else:
                    self.device_assignment = device_assignment_lib.device_assignment(
                        topology,
                        computation_shape=computation_shape,
                        num_replicas=data_parallelism,
                        device_order_mode=train_cfg.train.tpu_device_order_mode
                    )
                py_utils.SetTpuDeviceAssignment(self.device_assignment, job)
                tf.logging.info('device_assignment.core_assignment: %s',
                                str(self.device_assignment.core_assignment))
                tf.logging.info(
                    'device_assignment.topology.device_coordinates: %s',
                    str(self.device_assignment.topology.device_coordinates))
            except py_utils.transient_tf_errors as e:
                tf.logging.info('TPU initialization failed: %s', e)
                raise

        if self._ml_perf_log:
            mlp_log.mlperf_print(key='init_start', value=None)
        if len(self._cluster.all_worker_names) > 1:
            for worker in self._cluster.all_worker_names:
                _WaitTillInit(worker)
        else:
            _WaitTillInit(None)

        shared_model = self._MaybeConstructSharedModel(train_cfg)

        self._program_schedule_dict = {}
        self._programs = []
        self._ckpt_programs = []

        self._checkpoint_to_load = None
        with self._cluster:
            # Create the ExponentialMovingAverage singleton shared by all programs, if
            # applicable.
            ema = py_utils.CreateEMAForModel(train_cfg, self._global_step_var)
            for task_string, program_schedule_params in ps_params_dict.items():
                program_schedule_params.logdir = self._logdir
                program_schedule_params.num_splits_per_client = data_parallelism
                program_schedule_params.task_name = task_string
                # If the model was created above, we'll inject it here as a
                # shared_model.
                ps = program_schedule_params.Instantiate(
                    shared_model=shared_model,
                    trial=self._trial,
                    ema=ema,
                    tf_master=self._tf_master)
                self._program_schedule_dict[task_string] = ps
                tf.logging.info('program_schedule_params: %s',
                                program_schedule_params.ToText())
                self._programs += ps.Programs()
                if ps.train_program:
                    self._ckpt_programs.append(ps.train_program)
                else:
                    self._ckpt_programs += ps.Programs()
                if program_schedule_params.ml_perf.benchmark_name is not None:
                    self._ml_perf = program_schedule_params.ml_perf
                if ('checkpoint_to_load' in program_schedule_params
                        and program_schedule_params.checkpoint_to_load):
                    if (self._checkpoint_to_load
                            and (self._checkpoint_to_load !=
                                 program_schedule_params.checkpoint_to_load)):
                        raise ValueError(
                            f'Multiple values found for checkpoint_to_load: '
                            f'{self._checkpoint_to_load}, '
                            f'{program_schedule_params.checkpoint_to_load}.')
                    self._checkpoint_to_load = program_schedule_params.checkpoint_to_load

        tf.logging.info('num_programs: %d', len(self._programs))

        # When running in a vizier trainer, the executor reports infeasiable runs
        # in case of errors. The programs report metrics and normal completions.
        for program in self._programs:
            if program._should_report_metrics:
                self._should_report_metrics = True

        with self._cluster, tf.container(
                self._container_id), contextlib.ExitStack() as stack:
            if not py_utils.IsEagerMode():
                stack.enter_context(self._graph.as_default())

                if FLAGS.use_tpu_mirrored_vars:
                    resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
                        FLAGS.tf_master,
                        job_name=FLAGS.worker_job[len('/job:'):])
                    self._tpu_strategy = tf.distribute.experimental.TPUStrategy(
                        resolver, device_assignment=self.device_assignment)
                    stack.enter_context(self._tpu_strategy.scope())
                    stack.enter_context(
                        tpu_strategy._TPUReplicaContext(self._tpu_strategy))
                else:
                    stack.enter_context(tf.device(self._cluster.GetPlacer()))

            if FLAGS.pdb_on_exception:
                stack.enter_context(pdb_wrapper.catch_post_mortem())
            with py_utils.VariableStore(), py_utils.VariableRenameScope(
                    self._variable_renaming_rules):
                # `BuildTpuSubgraph` has to be called before checkpoint restore, so that
                # the optimizer slot variables are guaranteed to be initialized before
                # they get loaded. Otherwise, the optimizers' slot variables will not
                # be properly loaded when V1 checkpoint is used.
                for program in self._programs:
                    program.BuildTpuSubgraph()
                    py_utils.ClearTpuSummaryTensors()

            if not py_utils.IsEagerMode():
                self._initialize_tables = tf.tables_initializer()
                self._initialize_local_vars = tf.local_variables_initializer()
                self._initialize_global_vars = tf.global_variables_initializer(
                )

            checkpointer_models = [
                program.GetModel() for program in self._ckpt_programs
            ]

            if py_utils.IsEagerMode():
                if FLAGS.use_v2_checkpoints_in_eager:
                    self._checkpointer = checkpointer.EagerCheckpointerV2(
                        self._checkpoint_dir,
                        models=checkpointer_models,
                        init_op=None,
                        train_params=train_cfg.train,
                        save_only=False)
                else:
                    self._checkpointer = checkpointer.EagerCheckpointerV1(
                        self._checkpoint_dir,
                        models=checkpointer_models,
                        init_op=None,
                        train_params=train_cfg.train,
                        save_only=False)
            else:
                self._checkpointer = checkpointer.Checkpointer(
                    self._checkpoint_dir,
                    models=checkpointer_models,
                    init_op=self._initialize_global_vars,
                    train_params=train_cfg.train,
                    save_only=False)

            for program in self._programs:
                program.SetStatusMessageFn(self._SetStatusMessage)

            tpu_embedding_collection = (
                tpu_embedding_layers.TpuEmbeddingCollection.Get())
            self._load_ops = tpu_embedding_collection.load_ops
            self._retrieve_ops = tpu_embedding_collection.retrieve_ops
            self._tpu_embedding = tpu_embedding_collection.tpu_embedding