Beispiel #1
0
def name_and_object_from_url(url):
    url_split = url.split("/")
    name = None
    obj_exists = False

    if url_split[0] == "EllipticCurve":
        if url_split[1] == 'Q':
            # EllipticCurve/Q/341641/a
            label_isogeny_class = ".".join(url_split[-2:])
            # count doesn't honor limit!
            obj_exists = db.ec_curves.exists(
                {"lmfdb_iso": label_isogeny_class})
        else:
            # EllipticCurve/2.2.140.1/14.1/a
            label_isogeny_class = "-".join(url_split[-3:])
            obj_exists = db.ec_nfcurves.exists(
                {"class_label": label_isogeny_class})
        name = 'Isogeny class ' + label_isogeny_class

    elif url_split[0] == "ModularForm":
        if url_split[1] == 'GL2':
            if url_split[2] == 'Q' and url_split[3] == 'holomorphic':
                # ModularForm/GL2/Q/holomorphic/14/2/1/a
                full_label = ".".join(url_split[-4:])
                name = 'Modular form ' + full_label
                obj_exists = is_newform_in_db(full_label)

            elif url_split[2] == 'TotallyReal':
                # ModularForm/GL2/TotallyReal/2.2.140.1/holomorphic/2.2.140.1-14.1-a
                label = url_split[-1]
                name = 'Hilbert modular form ' + label
                obj_exists = is_hmf_in_db(label)

            elif url_split[2] == 'ImaginaryQuadratic':
                # ModularForm/GL2/ImaginaryQuadratic/2.0.4.1/98.1/a
                label = '-'.join(url_split[-3:])
                name = 'Bianchi modular form ' + label
                obj_exists = is_bmf_in_db(label)
    return name, obj_exists
Beispiel #2
0
def name_and_object_from_url(url):
    url_split = url.split("/");
    name = None;
    obj_exists = False;

    if url_split[0] == "EllipticCurve":
        if url_split[1] == 'Q':
            # EllipticCurve/Q/341641/a
            label_isogeny_class = ".".join(url_split[-2:]);
            # count doesn't honor limit!
            obj_exists = db.ec_curves.exists({"lmfdb_iso" : label_isogeny_class})
        else:
            # EllipticCurve/2.2.140.1/14.1/a
            label_isogeny_class =  "-".join(url_split[-3:]);
            obj_exists = db.ec_nfcurves.exists({"class_label" : label_isogeny_class})
        name = 'Isogeny class ' + label_isogeny_class;

    elif url_split[0] == "ModularForm":
        if url_split[1] == 'GL2':
            if url_split[2] == 'Q' and url_split[3]  == 'holomorphic':
                # ModularForm/GL2/Q/holomorphic/14/2/1/a
                full_label = ".".join(url_split[-4:])
                name =  'Modular form ' + full_label;
                obj_exists = is_newform_in_db(full_label);

            elif  url_split[2] == 'TotallyReal':
                # ModularForm/GL2/TotallyReal/2.2.140.1/holomorphic/2.2.140.1-14.1-a
                label = url_split[-1];
                name =  'Hilbert modular form ' + label;
                obj_exists = is_hmf_in_db(label);

            elif url_split[2] ==  'ImaginaryQuadratic':
                # ModularForm/GL2/ImaginaryQuadratic/2.0.4.1/98.1/a
                label = '-'.join(url_split[-3:])
                name = 'Bianchi modular form ' + label;
                obj_exists = is_bmf_in_db(label);
    return name, obj_exists
Beispiel #3
0
    def make_curve(self):
        # To start with the data fields of self are just those from
        # the database.  We need to reformat these.

        # Old version: required constructing the actual elliptic curve
        # E, and computing some further data about it.

        # New version (May 2016): extra data fields now in the
        # database so we do not have to construct the curve or do any
        # computation with it on the fly.  As a failsafe the old way
        # is still included.

        data = self.data = {}
        try:
            data['ainvs'] = [int(c) for c in self.xainvs[1:-1].split(',')]
        except AttributeError:
            data['ainvs'] = [int(ai) for ai in self.ainvs]
        data['conductor'] = N = ZZ(self.conductor)
        data['j_invariant'] = QQ(str(self.jinv))
        data['j_inv_factor'] = latex(0)
        if data['j_invariant']:  # don't factor 0
            data['j_inv_factor'] = latex(data['j_invariant'].factor())
        data['j_inv_str'] = unicode(str(data['j_invariant']))
        data['j_inv_latex'] = web_latex(data['j_invariant'])
        mw = self.mw = {}
        mw['rank'] = self.rank
        mw['int_points'] = ''
        if self.xintcoords:
            a1, a2, a3, a4, a6 = [ZZ(a) for a in data['ainvs']]

            def lift_x(x):
                f = ((x + a2) * x + a4) * x + a6
                b = (a1 * x + a3)
                d = (b * b + 4 * f).sqrt()
                return (x, (-b + d) / 2)

            mw['int_points'] = ', '.join(
                web_latex(lift_x(x)) for x in self.xintcoords)

        mw['generators'] = ''
        mw['heights'] = []
        if self.gens:
            mw['generators'] = [
                web_latex(tuple(P)) for P in parse_points(self.gens)
            ]

        mw['tor_order'] = self.torsion
        tor_struct = [int(c) for c in self.torsion_structure]
        if mw['tor_order'] == 1:
            mw['tor_struct'] = '\mathrm{Trivial}'
            mw['tor_gens'] = ''
        else:
            mw['tor_struct'] = ' \\times '.join(
                ['\Z/{%s}\Z' % n for n in tor_struct])
            mw['tor_gens'] = ', '.join(
                web_latex(tuple(P))
                for P in parse_points(self.torsion_generators))

        # try to get all the data we need from the database entry (now in self)
        try:
            data['equation'] = self.equation
            local_data = self.local_data
            D = self.signD * prod(
                [ld['p']**ld['ord_disc'] for ld in local_data])
            data['disc'] = D
            Nfac = Factorization([(ZZ(ld['p']), ld['ord_cond'])
                                  for ld in local_data])
            Dfac = Factorization([(ZZ(ld['p']), ld['ord_disc'])
                                  for ld in local_data],
                                 unit=ZZ(self.signD))

            data['minq_D'] = minqD = self.min_quad_twist['disc']
            minq_label = self.min_quad_twist['label']
            data['minq_label'] = db_ec().find_one(
                {'label': minq_label}, ['lmfdb_label'])['lmfdb_label']
            data['minq_info'] = '(itself)' if minqD == 1 else '(by %s)' % minqD
            try:
                data['degree'] = self.degree
            except AttributeError:
                data['degree'] = 0  # invalid, but will be displayed nicely
            mw['heights'] = self.heights
            if self.number == 1:
                data['an'] = self.anlist
                data['ap'] = self.aplist
            else:
                r = db_ec().find_one({
                    'lmfdb_iso': self.lmfdb_iso,
                    'number': 1
                }, ['anlist', 'aplist'])
                data['an'] = r['anlist']
                data['ap'] = r['aplist']

        # otherwise fall back to computing it from the curve
        except AttributeError:
            print("Falling back to constructing E")
            self.E = EllipticCurve(data['ainvs'])
            data['equation'] = web_latex(self.E)
            data['disc'] = D = self.E.discriminant()
            Nfac = N.factor()
            Dfac = D.factor()
            bad_primes = [p for p, e in Nfac]
            try:
                data['degree'] = self.degree
            except AttributeError:
                try:
                    data['degree'] = self.E.modular_degree()
                except RuntimeError:
                    data['degree'] = 0  # invalid, but will be displayed nicely
            minq, minqD = self.E.minimal_quadratic_twist()
            data['minq_D'] = minqD
            if minqD == 1:
                data['minq_label'] = self.lmfdb_label
                data['minq_info'] = '(itself)'
            else:
                # This relies on the minimal twist being in the
                # database, which is true when the database only
                # contains the Cremona database.  It would be a good
                # idea if, when the database is extended, we ensured
                # that for any curve included, all twists of smaller
                # conductor are also included.
                minq_ainvs = [str(c) for c in minq.ainvs()]
                data['minq_label'] = db_ec().find_one(
                    {
                        'jinv': str(self.E.j_invariant()),
                        'ainvs': minq_ainvs
                    }, ['lmfdb_label'])['lmfdb_label']
                data['minq_info'] = '(by %s)' % minqD

            if self.gens:
                self.generators = [self.E(g) for g in parse_points(self.gens)]
                mw['heights'] = [P.height() for P in self.generators]

            data['an'] = self.E.anlist(20, python_ints=True)
            data['ap'] = self.E.aplist(100, python_ints=True)
            self.local_data = local_data = []
            for p in bad_primes:
                ld = self.E.local_data(p, algorithm="generic")
                local_data_p = {}
                local_data_p['p'] = p
                local_data_p['cp'] = ld.tamagawa_number()
                local_data_p['kod'] = web_latex(ld.kodaira_symbol()).replace(
                    '$', '')
                local_data_p['red'] = ld.bad_reduction_type()
                rootno = -ld.bad_reduction_type()
                if rootno == 0:
                    rootno = self.E.root_number(p)
                local_data_p['rootno'] = rootno
                local_data_p['ord_cond'] = ld.conductor_valuation()
                local_data_p['ord_disc'] = ld.discriminant_valuation()
                local_data_p['ord_den_j'] = max(
                    0, -self.E.j_invariant().valuation(p))
                local_data.append(local_data_p)

        # If we got the data from the database, the root numbers may
        # not have been stored there, so we have to compute them.  If
        # there are additive primes this means constructing the curve.
        for ld in self.local_data:
            if not 'rootno' in ld:
                rootno = -ld['red']
                if rootno == 0:
                    try:
                        E = self.E
                    except AttributeError:
                        self.E = E = EllipticCurve(data['ainvs'])
                    rootno = E.root_number(ld['p'])
                ld['rootno'] = rootno

        minq_N, minq_iso, minq_number = split_lmfdb_label(data['minq_label'])

        data['disc_factor'] = latex(Dfac)
        data['cond_factor'] = latex(Nfac)
        data['disc_latex'] = web_latex(D)
        data['cond_latex'] = web_latex(N)

        data['CMD'] = self.cm
        data['CM'] = "no"
        data['EndE'] = "\(\Z\)"
        if self.cm:
            data['CM'] = "yes (\(D=%s\))" % data['CMD']
            if data['CMD'] % 4 == 0:
                d4 = ZZ(data['CMD']) // 4
                data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4
            else:
                data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD']
            data['ST'] = st_link_by_name(1, 2, 'N(U(1))')
        else:
            data['ST'] = st_link_by_name(1, 2, 'SU(2)')

        data['p_adic_primes'] = [
            p for i, p in enumerate(prime_range(5, 100))
            if (N * data['ap'][i]) % p != 0
        ]

        try:
            data['galois_images'] = [
                trim_galois_image_code(s) for s in self.galois_images
            ]
            data['non_surjective_primes'] = self.non_surjective_primes
        except AttributeError:
            #print "No Galois image data"
            data['galois_images'] = []
            data['non_surjective_primes'] = []

        data['galois_data'] = [{
            'p': p,
            'image': im
        } for p, im in zip(data['non_surjective_primes'],
                           data['galois_images'])]

        cond, iso, num = split_lmfdb_label(self.lmfdb_label)
        self.class_url = url_for(".by_double_iso_label",
                                 conductor=N,
                                 iso_label=iso)
        self.ncurves = db_ec().count({'lmfdb_iso': self.lmfdb_iso})
        isodegs = [str(d) for d in self.isogeny_degrees if d > 1]
        if len(isodegs) < 3:
            data['isogeny_degrees'] = " and ".join(isodegs)
        else:
            data['isogeny_degrees'] = " and ".join(
                [", ".join(isodegs[:-1]), isodegs[-1]])

        if self.twoadic_gens:
            from sage.matrix.all import Matrix
            data['twoadic_gen_matrices'] = ','.join(
                [latex(Matrix(2, 2, M)) for M in self.twoadic_gens])
            data[
                'twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html"

        # Leading term of L-function & BSD data
        bsd = self.bsd = {}
        r = self.rank
        if r >= 2:
            bsd['lder_name'] = "L^{(%s)}(E,1)/%s!" % (r, r)
        elif r:
            bsd['lder_name'] = "L'(E,1)"
        else:
            bsd['lder_name'] = "L(E,1)"

        bsd['reg'] = self.regulator
        bsd['omega'] = self.real_period
        bsd['sha'] = int(0.1 + self.sha_an)
        bsd['lder'] = self.special_value

        # Optimality (the optimal curve in the class is the curve
        # whose Cremona label ends in '1' except for '990h' which was
        # labelled wrongly long ago)

        if self.iso == '990h':
            data['Gamma0optimal'] = bool(self.number == 3)
        else:
            data['Gamma0optimal'] = bool(self.number == 1)

        data['p_adic_data_exists'] = False
        if data['Gamma0optimal']:
            data['p_adic_data_exists'] = (padic_db().find({
                'lmfdb_iso':
                self.lmfdb_iso
            }).count()) > 0

        tamagawa_numbers = [ZZ(ld['cp']) for ld in local_data]
        cp_fac = [cp.factor() for cp in tamagawa_numbers]
        cp_fac = [
            latex(cp) if len(cp) < 2 else '(' + latex(cp) + ')'
            for cp in cp_fac
        ]
        bsd['tamagawa_factors'] = r'\cdot'.join(cp_fac)
        bsd['tamagawa_product'] = prod(tamagawa_numbers)

        data['newform'] = web_latex(
            PowerSeriesRing(QQ, 'q')(data['an'], 20, check=True))
        data['newform_label'] = self.newform_label = newform_label(
            cond, 2, 1, iso)
        self.newform_link = url_for("emf.render_elliptic_modular_forms",
                                    level=cond,
                                    weight=2,
                                    character=1,
                                    label=iso)
        self.newform_exists_in_db = is_newform_in_db(self.newform_label)
        self._code = None

        self.class_url = url_for(".by_double_iso_label",
                                 conductor=N,
                                 iso_label=iso)
        self.friends = [('Isogeny class ' + self.lmfdb_iso, self.class_url),
                        ('Minimal quadratic twist %s %s' %
                         (data['minq_info'], data['minq_label']),
                         url_for(".by_triple_label",
                                 conductor=minq_N,
                                 iso_label=minq_iso,
                                 number=minq_number)),
                        ('All twists ',
                         url_for(".rational_elliptic_curves", jinv=self.jinv)),
                        ('L-function',
                         url_for("l_functions.l_function_ec_page",
                                 label=self.lmfdb_label))]
        if not self.cm:
            if N <= 300:
                self.friends += [('Symmetric square L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='2',
                                          label=self.lmfdb_iso))]
            if N <= 50:
                self.friends += [('Symmetric cube L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='3',
                                          label=self.lmfdb_iso))]
        if self.newform_exists_in_db:
            self.friends += [('Modular form ' + self.newform_label,
                              self.newform_link)]

        self.downloads = [('Download coefficients of q-expansion',
                           url_for(".download_EC_qexp",
                                   label=self.lmfdb_label,
                                   limit=1000)),
                          ('Download all stored data',
                           url_for(".download_EC_all",
                                   label=self.lmfdb_label)),
                          ('Download Magma code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='magma')),
                          ('Download Sage code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='sage')),
                          ('Download GP code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='gp'))]

        try:
            self.plot = encode_plot(self.E.plot())
        except AttributeError:
            self.plot = encode_plot(EllipticCurve(data['ainvs']).plot())

        self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot
        self.properties = [('Label', self.lmfdb_label), (None, self.plot_link),
                           ('Conductor', '\(%s\)' % data['conductor']),
                           ('Discriminant', '\(%s\)' % data['disc']),
                           ('j-invariant', '%s' % data['j_inv_latex']),
                           ('CM', '%s' % data['CM']),
                           ('Rank', '\(%s\)' % mw['rank']),
                           ('Torsion Structure', '\(%s\)' % mw['tor_struct'])]

        self.title = "Elliptic Curve %s (Cremona label %s)" % (
            self.lmfdb_label, self.label)

        self.bread = [('Elliptic Curves', url_for("ecnf.index")),
                      ('$\Q$', url_for(".rational_elliptic_curves")),
                      ('%s' % N, url_for(".by_conductor", conductor=N)),
                      ('%s' % iso,
                       url_for(".by_double_iso_label",
                               conductor=N,
                               iso_label=iso)), ('%s' % num, ' ')]
Beispiel #4
0
    def make_class(self):
        self.CM = self.cm
        N, iso, number = split_lmfdb_label(self.lmfdb_iso)

        # Extract the size of the isogeny class from the database
        ncurves = self.class_size
        # Create a list of the curves in the class from the database
        self.curves = [db_ec().find_one({'iso':self.iso, 'lmfdb_number': i+1})
                          for i in range(ncurves)]

        # Set optimality flags.  The optimal curve is number 1 except
        # in one case which is labeled differently in the Cremona tables
        for c in self.curves:
            c['optimal'] = (c['number']==(3 if self.label == '990h' else 1))
            c['ai'] = parse_ainvs(c['xainvs'])
            c['url'] = url_for(".by_triple_label", conductor=N, iso_label=iso, number=c['lmfdb_number'])

        from sage.matrix.all import Matrix
        self.isogeny_matrix = Matrix(self.isogeny_matrix)
        self.isogeny_matrix_str = latex(matrix(self.isogeny_matrix))

        # Create isogeny graph:
        self.graph = make_graph(self.isogeny_matrix)
        P = self.graph.plot(edge_labels=True)
        self.graph_img = encode_plot(P)
        self.graph_link = '<img src="%s" width="200" height="150"/>' % self.graph_img


        self.newform =  web_latex(PowerSeriesRing(QQ, 'q')(self.anlist, 20, check=True))
        self.newform_label = newform_label(N,2,1,iso)
        self.newform_link = url_for("emf.render_elliptic_modular_forms", level=N, weight=2, character=1, label=iso)
        self.newform_exists_in_db = is_newform_in_db(self.newform_label)

        self.lfunction_link = url_for("l_functions.l_function_ec_page", conductor_label = N, isogeny_class_label = iso)

        self.friends =  [('L-function', self.lfunction_link)]
        if not self.CM:
            self.CM = "no"
            if int(N)<=300:
                self.friends += [('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', conductor = N, isogeny = iso))]
            if int(N)<=50:
                self.friends += [('Symmetric cube L-function', url_for("l_functions.l_function_ec_sym_page", power='3', conductor = N, isogeny = iso))]
        if self.newform_exists_in_db:
            self.friends +=  [('Modular form ' + self.newform_label, self.newform_link)]

        self.properties = [('Label', self.lmfdb_iso),
                           ('Number of curves', str(ncurves)),
                           ('Conductor', '\(%s\)' % N),
                           ('CM', '%s' % self.CM),
                           ('Rank', '\(%s\)' % self.rank),
                           ('Graph', ''),(None, self.graph_link)
                           ]


        self.downloads = [('Download coefficients of newform', url_for(".download_EC_qexp", label=self.lmfdb_iso, limit=1000)),
                         ('Download stored data for all curves', url_for(".download_EC_all", label=self.lmfdb_iso))]

        if self.lmfdb_iso == self.iso:
            self.title = "Elliptic Curve Isogeny Class %s" % self.lmfdb_iso
        else:
            self.title = "Elliptic Curve Isogeny Class %s (Cremona label %s)" % (self.lmfdb_iso, self.iso)

        self.bread = [('Elliptic Curves', url_for("ecnf.index")),
                      ('$\Q$', url_for(".rational_elliptic_curves")),
                      ('%s' % N, url_for(".by_conductor", conductor=N)),
                      ('%s' % iso, ' ')]
        self.code = {}
        self.code['show'] = {'sage':''} # use default show names
        self.code['class'] = {'sage':'E = EllipticCurve("%s1")\n'%(self.lmfdb_iso) + 'E.isogeny_class()\n'}
        self.code['curves'] = {'sage':'E.isogeny_class().curves'}
        self.code['rank'] = {'sage':'E.rank()'}
        self.code['q_eigenform'] = {'sage':'E.q_eigenform(10)'}
        self.code['matrix'] = {'sage':'E.isogeny_class().matrix()'}
        self.code['plot'] = {'sage':'E.isogeny_graph().plot(edge_labels=True)'}
Beispiel #5
0
    def make_form(self):
        # To start with the data fields of self are just those from
        # the database.  We need to reformat these and compute some
        # further (easy) data about it.
        #
        from lmfdb.ecnf.WebEllipticCurve import FIELD
        self.field = FIELD(self.field_label)
        pretty_field = field_pretty(self.field_label)
        self.field_knowl = nf_display_knowl(self.field_label, pretty_field)
        try:
            dims = db.bmf_dims.lucky(
                {
                    'field_label': self.field_label,
                    'level_label': self.level_label
                },
                projection='gl2_dims')
            self.newspace_dimension = dims[str(self.weight)]['new_dim']
        except TypeError:
            self.newspace_dimension = 'not available'
        self.newspace_label = "-".join([self.field_label, self.level_label])
        self.newspace_url = url_for(".render_bmf_space_webpage",
                                    field_label=self.field_label,
                                    level_label=self.level_label)
        K = self.field.K()

        if self.dimension > 1:
            Qx = PolynomialRing(QQ, 'x')
            self.hecke_poly = Qx(str(self.hecke_poly))
            F = NumberField(self.hecke_poly, 'z')
            self.hecke_poly = web_latex(self.hecke_poly)

            def conv(ap):
                if '?' in ap:
                    return 'not known'
                else:
                    return F(str(ap))

            self.hecke_eigs = [conv(str(ap)) for ap in self.hecke_eigs]

        self.nap = len(self.hecke_eigs)
        self.nap0 = min(50, self.nap)
        self.hecke_table = [[
            web_latex(p.norm()),
            ideal_label(p),
            web_latex(p.gens_reduced()[0]),
            web_latex(ap)
        ] for p, ap in zip(primes_iter(K), self.hecke_eigs[:self.nap0])]
        level = ideal_from_label(K, self.level_label)
        self.level_ideal2 = web_latex(level)
        badp = level.prime_factors()
        self.have_AL = self.AL_eigs[0] != '?'
        if self.have_AL:
            self.AL_table = [[
                web_latex(p.norm()),
                ideal_label(p),
                web_latex(p.gens_reduced()[0]),
                web_latex(ap)
            ] for p, ap in zip(badp, self.AL_eigs)]
        self.sign = 'not determined'
        if self.sfe == 1:
            self.sign = "+1"
        elif self.sfe == -1:
            self.sign = "-1"

        if self.Lratio == '?':
            self.Lratio = "not determined"
            self.anrank = "not determined"
        else:
            self.Lratio = QQ(self.Lratio)
            self.anrank = "\(0\)" if self.Lratio != 0 else "odd" if self.sfe == -1 else "\(\ge2\), even"

        self.properties2 = [('Base field', pretty_field),
                            ('Weight', str(self.weight)),
                            ('Level norm', str(self.level_norm)),
                            ('Level', self.level_ideal2),
                            ('Label', self.label),
                            ('Dimension', str(self.dimension))]

        if self.CM == '?':
            self.CM = 'not determined'
        elif self.CM == 0:
            self.CM = 'no'
        self.properties2.append(('CM', str(self.CM)))

        self.bc_extra = ''
        self.bcd = 0
        self.bct = self.bc != '?' and self.bc != 0
        if self.bc == '?':
            self.bc = 'not determined'
        elif self.bc == 0:
            self.bc = 'no'
        elif self.bc == 1:
            self.bcd = self.bc
            self.bc = 'yes'
        elif self.bc > 1:
            self.bcd = self.bc
            self.bc = 'yes'
            self.bc_extra = ', of a form over \(\mathbb{Q}\) with coefficients in \(\mathbb{Q}(\sqrt{' + str(
                self.bcd) + '})\)'
        elif self.bc == -1:
            self.bc = 'no'
            self.bc_extra = ', but is a twist of the base-change of a form over \(\mathbb{Q}\)'
        elif self.bc < -1:
            self.bcd = -self.bc
            self.bc = 'no'
            self.bc_extra = ', but is a twist of the base-change of a form over \(\mathbb{Q}\) with coefficients in \(\mathbb{Q}(\sqrt{' + str(
                self.bcd) + '})\)'
        self.properties2.append(('Base-change', str(self.bc)))

        curve_bc = db.ec_nfcurves.lucky({'class_label': self.label},
                                        projection="base_change")
        if curve_bc is not None:
            self.ec_status = 'exists'
            self.ec_url = url_for("ecnf.show_ecnf_isoclass",
                                  nf=self.field_label,
                                  conductor_label=self.level_label,
                                  class_label=self.label_suffix)
            curve_bc_parts = [split_lmfdb_label(lab) for lab in curve_bc]
            bc_urls = [
                url_for("emf.render_elliptic_modular_forms",
                        level=cond,
                        weight=2,
                        character=1,
                        label=iso) for cond, iso, num in curve_bc_parts
            ]
            bc_labels = [
                newform_label(cond, 2, 1, iso)
                for cond, iso, num in curve_bc_parts
            ]
            bc_exists = [is_newform_in_db(lab) for lab in bc_labels]
            self.bc_forms = [{
                'exists': ex,
                'label': lab,
                'url': url
            } for ex, lab, url in zip(bc_exists, bc_labels, bc_urls)]
        else:
            self.bc_forms = []
            if self.bct:
                self.ec_status = 'none'
            else:
                self.ec_status = 'missing'

        self.properties2.append(('Sign', self.sign))
        self.properties2.append(('Analytic rank', self.anrank))

        self.friends = []
        if self.dimension == 1:
            if self.ec_status == 'exists':
                self.friends += [
                    ('Elliptic curve isogeny class {}'.format(self.label),
                     self.ec_url)
                ]
            elif self.ec_status == 'missing':
                self.friends += [
                    ('Elliptic curve {} missing'.format(self.label), "")
                ]
            else:
                self.friends += [('No elliptic curve', "")]

        self.friends += [('Newspace {}'.format(self.newspace_label),
                          self.newspace_url)]
        self.friends += [('L-function not available', '')]
Beispiel #6
0
    def make_form(self):
        # To start with the data fields of self are just those from
        # the database.  We need to reformat these and compute some
        # further (easy) data about it.
        #
        from lmfdb.ecnf.WebEllipticCurve import FIELD
        self.field = FIELD(self.field_label)
        pretty_field = field_pretty(self.field_label)
        self.field_knowl = nf_display_knowl(self.field_label, getDBConnection(), pretty_field)
        try:
            dims = db_dims().find_one({'field_label':self.field_label, 'level_label':self.level_label})['gl2_dims']
            self.newspace_dimension = dims[str(self.weight)]['new_dim']
        except TypeError:
            self.newspace_dimension = 'not available'
        self.newspace_label = "-".join([self.field_label,self.level_label])
        self.newspace_url = url_for(".render_bmf_space_webpage", field_label=self.field_label, level_label=self.level_label)
        K = self.field.K()

        if self.dimension>1:
            Qx = PolynomialRing(QQ,'x')
            self.hecke_poly = Qx(str(self.hecke_poly))
            F = NumberField(self.hecke_poly,'z')
            self.hecke_poly = web_latex(self.hecke_poly)
            def conv(ap):
                if '?' in ap:
                    return 'not known'
                else:
                    return F(str(ap))
            self.hecke_eigs = [conv(str(ap)) for ap in self.hecke_eigs]

        self.nap = len(self.hecke_eigs)
        self.nap0 = min(50, self.nap)
        self.hecke_table = [[web_latex(p.norm()),
                             ideal_label(p),
                             web_latex(p.gens_reduced()[0]),
                             web_latex(ap)] for p,ap in zip(primes_iter(K), self.hecke_eigs[:self.nap0])]
        level = ideal_from_label(K,self.level_label)
        self.level_ideal2 = web_latex(level)
        badp = level.prime_factors()
        self.have_AL = self.AL_eigs[0]!='?'
        if self.have_AL:
            self.AL_table = [[web_latex(p.norm()),
                             ideal_label(p),
                              web_latex(p.gens_reduced()[0]),
                              web_latex(ap)] for p,ap in zip(badp, self.AL_eigs)]
        self.sign = 'not determined'
        if self.sfe == 1:
            self.sign = "+1"
        elif self.sfe == -1:
            self.sign = "-1"

        if self.Lratio == '?':
            self.Lratio = "not determined"
            self.anrank = "not determined"
        else:
            self.Lratio = QQ(self.Lratio)
            self.anrank = "\(0\)" if self.Lratio!=0 else "odd" if self.sfe==-1 else "\(\ge2\), even"

        self.properties2 = [('Base field', pretty_field),
                            ('Weight', str(self.weight)),
                            ('Level norm', str(self.level_norm)),
                            ('Level', self.level_ideal2),
                            ('Label', self.label),
                            ('Dimension', str(self.dimension))
        ]

        if self.CM == '?':
            self.CM = 'not determined'
        elif self.CM == 0:
            self.CM = 'no'
        self.properties2.append(('CM', str(self.CM)))

        self.bc_extra = ''
        self.bcd = 0
        self.bct = self.bc!='?' and self.bc!=0
        if self.bc == '?':
            self.bc = 'not determined'
        elif self.bc == 0:
            self.bc = 'no'
        elif self.bc == 1:
            self.bcd = self.bc
            self.bc = 'yes'
        elif self.bc >1:
            self.bcd = self.bc
            self.bc = 'yes'
            self.bc_extra = ', of a form over \(\mathbb{Q}\) with coefficients in \(\mathbb{Q}(\sqrt{'+str(self.bcd)+'})\)'
        elif self.bc == -1:
            self.bc = 'no'
            self.bc_extra = ', but is a twist of the base-change of a form over \(\mathbb{Q}\)'
        elif self.bc < -1:
            self.bcd = -self.bc
            self.bc = 'no'
            self.bc_extra = ', but is a twist of the base-change of a form over \(\mathbb{Q}\) with coefficients in \(\mathbb{Q}(\sqrt{'+str(self.bcd)+'})\)'
        self.properties2.append(('Base-change', str(self.bc)))

        curve = db_ecnf().find_one({'class_label':self.label})
        if curve:
            self.ec_status = 'exists'
            self.ec_url = url_for("ecnf.show_ecnf_isoclass", nf=self.field_label, conductor_label=self.level_label, class_label=self.label_suffix)
            curve_bc = curve['base_change']
            curve_bc_parts = [split_lmfdb_label(lab) for lab in curve_bc]
            bc_urls = [url_for("emf.render_elliptic_modular_forms", level=cond, weight=2, character=1, label=iso) for cond, iso, num in curve_bc_parts]
            bc_labels = [newform_label(cond,2,1,iso) for cond,iso,num in curve_bc_parts]
            bc_exists = [is_newform_in_db(lab) for lab in bc_labels]
            self.bc_forms = [{'exists':ex, 'label':lab, 'url':url} for ex,lab,url in zip(bc_exists, bc_labels, bc_urls)]
        else:
            self.bc_forms = []
            if self.bct:
                self.ec_status = 'none'
            else:
                self.ec_status = 'missing'

        self.properties2.append(('Sign', self.sign))
        self.properties2.append(('Analytic rank', self.anrank))

        self.friends = []
        if self.dimension==1:
            if self.ec_status == 'exists':
                self.friends += [('Elliptic curve isogeny class {}'.format(self.label), self.ec_url)]
            elif self.ec_status == 'missing':
                self.friends += [('Elliptic curve {} missing'.format(self.label), "")]
            else:
                self.friends += [('No elliptic curve', "")]

        self.friends += [ ('Newspace {}'.format(self.newspace_label),self.newspace_url)]
        self.friends += [ ('L-function not available','')]
Beispiel #7
0
    def make_class(self):
        self.ainvs_str = self.ainvs
        self.ainvs = [int(a) for a in self.ainvs_str]
        self.E = EllipticCurve(self.ainvs)
        self.CM = self.E.has_cm()

        try:
            # Extract the isogeny degree matrix from the database
            size = len(self.isogeny_matrix)
            from sage.matrix.all import Matrix
            self.isogeny_matrix = Matrix(self.isogeny_matrix)
        except AttributeError:
            # Failsafe: construct it from scratch
            self.isogeny_matrix = self.E.isogeny_class(order="lmfdb").matrix()
            size = self.isogeny_matrix.nrows()
        self.ncurves = size

        # Create isogeny graph:
        self.graph = make_graph(self.isogeny_matrix)
        P = self.graph.plot(edge_labels=True)
        self.graph_img = encode_plot(P)
        self.graph_link = '<img src="%s" width="200" height="150"/>' % self.graph_img

        # Create a list of the curves in the class from the database
        self.db_curves = [self.E]
        self.optimal_flags = [False] * size
        self.degrees = [0] * size
        if self.degree:
            self.degrees[0] = self.degree
        else:
            try:
                self.degrees[0] = self.E.modular_degree()
            except RuntimeError:
                pass

        # Fill in the curves in the class by looking each one up in the db:

        self.cremona_labels = [self.label] + [0] * (size - 1)
        if self.number == 1:
            self.optimal_flags[0] = True
        for i in range(2, size + 1):
            Edata = db_ec().find_one({'lmfdb_label': self.lmfdb_iso + str(i)})
            Ei = EllipticCurve([int(a) for a in Edata['ainvs']])
            self.cremona_labels[i - 1] = Edata['label']
            if Edata['number'] == 1:
                self.optimal_flags[i - 1] = True
            if 'degree' in Edata:
                self.degrees[i - 1] = Edata['degree']
            else:
                try:
                    self.degrees[i - 1] = Ei.modular_degree()
                except RuntimeError:
                    pass
            self.db_curves.append(Ei)

        if self.iso == '990h':  # this isogeny class is labeled wrong in Cremona's tables
            self.optimal_flags = [False, False, True, False]

        self.isogeny_matrix_str = latex(matrix(self.isogeny_matrix))

        N, iso, number = split_lmfdb_label(self.lmfdb_iso)

        self.newform = web_latex(self.E.q_eigenform(10))
        self.newform_label = newform_label(N, 2, 1, iso)
        self.newform_link = url_for("emf.render_elliptic_modular_forms",
                                    level=N,
                                    weight=2,
                                    character=1,
                                    label=iso)
        newform_exists_in_db = is_newform_in_db(self.newform_label)

        self.lfunction_link = url_for("l_functions.l_function_ec_page",
                                      label=self.lmfdb_iso)

        self.curves = [
            dict([('label', self.lmfdb_iso + str(i + 1)),
                  ('url',
                   url_for(".by_triple_label",
                           conductor=N,
                           iso_label=iso,
                           number=i + 1)),
                  ('cremona_label', self.cremona_labels[i]),
                  ('ainvs', str(list(c.ainvs()))),
                  ('torsion', c.torsion_order()), ('degree', self.degrees[i]),
                  ('optimal', self.optimal_flags[i])])
            for i, c in enumerate(self.db_curves)
        ]

        self.friends = [('L-function', self.lfunction_link)]
        if not self.CM:
            if int(N) <= 300:
                self.friends += [('Symmetric square L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='2',
                                          label=self.lmfdb_iso))]
            if int(N) <= 50:
                self.friends += [('Symmetric cube L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='3',
                                          label=self.lmfdb_iso))]
        if newform_exists_in_db:
            self.friends += [('Modular form ' + self.newform_label,
                              self.newform_link)]

        self.properties = [('Label', self.lmfdb_iso),
                           ('Number of curves', str(self.ncurves)),
                           ('Conductor', '\(%s\)' % N), ('CM', '%s' % self.CM),
                           ('Rank', '\(%s\)' % self.rank), ('Graph', ''),
                           (None, self.graph_link)]

        self.downloads = [('Download coefficients of newform',
                           url_for(".download_EC_qexp",
                                   label=self.lmfdb_iso,
                                   limit=100)),
                          ('Download stored data for all curves',
                           url_for(".download_EC_all", label=self.lmfdb_iso))]

        if self.lmfdb_iso == self.iso:
            self.title = "Elliptic Curve Isogeny Class %s" % self.lmfdb_iso
        else:
            self.title = "Elliptic Curve Isogeny Class %s (Cremona label %s)" % (
                self.lmfdb_iso, self.iso)

        self.bread = [('Elliptic Curves', url_for("ecnf.index")),
                      ('$\Q$', url_for(".rational_elliptic_curves")),
                      ('%s' % N, url_for(".by_conductor", conductor=N)),
                      ('%s' % iso, ' ')]
Beispiel #8
0
    def make_curve(self):
        # To start with the data fields of self are just those from
        # the database.  We need to reformat these, construct the
        # actual elliptic curve E, and compute some further (easy)
        # data about it.
        #

        # Weierstrass equation

        data = self.data = {}
        data["ainvs"] = [int(ai) for ai in self.ainvs]
        self.E = EllipticCurve(data["ainvs"])
        data["equation"] = web_latex(self.E)

        # conductor, j-invariant and discriminant

        data["conductor"] = N = ZZ(self.conductor)
        bad_primes = N.prime_factors()
        try:
            data["j_invariant"] = QQ(str(self.jinv))
        except KeyError:
            data["j_invariant"] = self.E.j_invariant()
        data["j_inv_factor"] = latex(0)
        if data["j_invariant"]:
            data["j_inv_factor"] = latex(data["j_invariant"].factor())
        data["j_inv_str"] = unicode(str(data["j_invariant"]))
        data["j_inv_latex"] = web_latex(data["j_invariant"])
        data["disc"] = D = self.E.discriminant()
        data["disc_latex"] = web_latex(data["disc"])
        data["disc_factor"] = latex(data["disc"].factor())
        data["cond_factor"] = latex(N.factor())
        data["cond_latex"] = web_latex(N)

        # CM and endomorphism ring

        data["CMD"] = self.cm
        data["CM"] = "no"
        data["EndE"] = "\(\Z\)"
        if self.cm:
            data["CM"] = "yes (\(D=%s\))" % data["CMD"]
            if data["CMD"] % 4 == 0:
                d4 = ZZ(data["CMD"]) // 4
                data["EndE"] = "\(\Z[\sqrt{%s}]\)" % d4
            else:
                data["EndE"] = "\(\Z[(1+\sqrt{%s})/2]\)" % data["CMD"]
            data["ST"] = '<a href="%s">$%s$</a>' % (url_for("st.by_label", label="1.2.N(U(1))"), "N(\\mathrm{U}(1))")
        else:
            data["ST"] = '<a href="%s">$%s$</a>' % (url_for("st.by_label", label="1.2.SU(2)"), "\\mathrm{SU}(2)")

        # modular degree

        try:
            data["degree"] = self.degree
        except AttributeError:
            try:
                data["degree"] = self.E.modular_degree()
            except RuntimeError:
                data["degree"]  # invalid, but will be displayed nicely

        # Minimal quadratic twist

        E_pari = self.E.pari_curve()
        from sage.libs.pari.all import PariError

        try:
            minq, minqD = self.E.minimal_quadratic_twist()
        except PariError:  # this does occur with 164411a1
            ec.debug("PariError computing minimal quadratic twist of elliptic curve %s" % lmfdb_label)
            minq = self.E
            minqD = 1
        data["minq_D"] = minqD
        if self.E == minq:
            data["minq_label"] = self.lmfdb_label
            data["minq_info"] = "(itself)"
        else:
            minq_ainvs = [str(c) for c in minq.ainvs()]
            data["minq_label"] = db_ec().find_one({"jinv": str(self.E.j_invariant()), "ainvs": minq_ainvs})[
                "lmfdb_label"
            ]
            data["minq_info"] = "(by %s)" % minqD

        minq_N, minq_iso, minq_number = split_lmfdb_label(data["minq_label"])

        # rational and integral points

        mw = self.mw = {}

        xintpoints_projective = [self.E.lift_x(x) for x in self.xintcoords]
        xintpoints = [P.xy() for P in xintpoints_projective]
        mw["int_points"] = ", ".join(web_latex(P) for P in xintpoints)

        # Generators of infinite order

        mw["rank"] = self.rank
        try:
            self.generators = [self.E(g) for g in parse_points(self.gens)]
            mw["generators"] = [web_latex(P.xy()) for P in self.generators]
            mw["heights"] = [P.height() for P in self.generators]
        except AttributeError:
            mw["generators"] = ""
            mw["heights"] = []

        # Torsion subgroup: order, structure, generators

        mw["tor_order"] = self.torsion
        tor_struct = [int(c) for c in self.torsion_structure]
        if mw["tor_order"] == 1:
            mw["tor_struct"] = "\mathrm{Trivial}"
            mw["tor_gens"] = ""
        else:
            mw["tor_struct"] = " \\times ".join(["\Z/{%s}\Z" % n for n in tor_struct])
            mw["tor_gens"] = ", ".join(web_latex(self.E(g).xy()) for g in parse_points(self.torsion_generators))

        # Images of Galois representations

        try:
            data["galois_images"] = [trim_galois_image_code(s) for s in self.galois_images]
            data["non_surjective_primes"] = self.non_surjective_primes
        except AttributeError:
            # print "No Galois image data"
            data["galois_images"] = []
            data["non_surjective_primes"] = []

        data["galois_data"] = [
            {"p": p, "image": im} for p, im in zip(data["non_surjective_primes"], data["galois_images"])
        ]

        if self.twoadic_gens:
            from sage.matrix.all import Matrix

            data["twoadic_gen_matrices"] = ",".join([latex(Matrix(2, 2, M)) for M in self.twoadic_gens])
            data["twoadic_rouse_url"] = ROUSE_URL_PREFIX + self.twoadic_label + ".html"
        # Leading term of L-function & BSD data

        bsd = self.bsd = {}

        r = self.rank
        if r >= 2:
            bsd["lder_name"] = "L^{(%s)}(E,1)/%s!" % (r, r)
        elif r:
            bsd["lder_name"] = "L'(E,1)"
        else:
            bsd["lder_name"] = "L(E,1)"

        bsd["reg"] = self.regulator
        bsd["omega"] = self.real_period
        bsd["sha"] = int(0.1 + self.sha_an)
        bsd["lder"] = self.special_value

        # Optimality (the optimal curve in the class is the curve
        # whose Cremona label ends in '1' except for '990h' which was
        # labelled wrongly long ago)

        if self.iso == "990h":
            data["Gamma0optimal"] = bool(self.number == 3)
        else:
            data["Gamma0optimal"] = bool(self.number == 1)

        data["p_adic_data_exists"] = False
        if data["Gamma0optimal"]:
            data["p_adic_data_exists"] = (padic_db().find({"lmfdb_iso": self.lmfdb_iso}).count()) > 0
        data["p_adic_primes"] = [p for p in sage.all.prime_range(5, 100) if self.E.is_ordinary(p) and not p.divides(N)]

        # Local data

        local_data = self.local_data = []
        # if we use E.tamagawa_numbers() it calls E.local_data(p) which
        # used to crash on some curves e.g. 164411a1
        tamagawa_numbers = []
        for p in bad_primes:
            local_info = self.E.local_data(p, algorithm="generic")
            local_data_p = {}
            local_data_p["p"] = p
            local_data_p["tamagawa_number"] = local_info.tamagawa_number()
            tamagawa_numbers.append(ZZ(local_info.tamagawa_number()))
            local_data_p["kodaira_symbol"] = web_latex(local_info.kodaira_symbol()).replace("$", "")
            local_data_p["reduction_type"] = local_info.bad_reduction_type()
            local_data_p["ord_cond"] = local_info.conductor_valuation()
            local_data_p["ord_disc"] = local_info.discriminant_valuation()
            local_data_p["ord_den_j"] = max(0, -self.E.j_invariant().valuation(p))
            local_data.append(local_data_p)

        cp_fac = [cp.factor() for cp in tamagawa_numbers]
        cp_fac = [latex(cp) if len(cp) < 2 else "(" + latex(cp) + ")" for cp in cp_fac]
        bsd["tamagawa_factors"] = r"\cdot".join(cp_fac)
        bsd["tamagawa_product"] = sage.misc.all.prod(tamagawa_numbers)

        cond, iso, num = split_lmfdb_label(self.lmfdb_label)
        data["newform"] = web_latex(self.E.q_eigenform(10))
        self.newform_label = newform_label(cond, 2, 1, iso)
        self.newform_link = url_for("emf.render_elliptic_modular_forms", level=cond, weight=2, character=1, label=iso)
        newform_exists_in_db = is_newform_in_db(self.newform_label)
        self._code = None

        self.friends = [
            ("Isogeny class " + self.lmfdb_iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)),
            (
                "Minimal quadratic twist %s %s" % (data["minq_info"], data["minq_label"]),
                url_for(".by_triple_label", conductor=minq_N, iso_label=minq_iso, number=minq_number),
            ),
            ("All twists ", url_for(".rational_elliptic_curves", jinv=self.jinv)),
            ("L-function", url_for("l_functions.l_function_ec_page", label=self.lmfdb_label)),
        ]
        if not self.cm:
            if N <= 300:
                self.friends += [
                    (
                        "Symmetric square L-function",
                        url_for("l_functions.l_function_ec_sym_page", power="2", label=self.lmfdb_iso),
                    )
                ]
            if N <= 50:
                self.friends += [
                    (
                        "Symmetric cube L-function",
                        url_for("l_functions.l_function_ec_sym_page", power="3", label=self.lmfdb_iso),
                    )
                ]
        if newform_exists_in_db:
            self.friends += [("Modular form " + self.newform_label, self.newform_link)]

        self.downloads = [
            ("Download coefficients of q-expansion", url_for(".download_EC_qexp", label=self.lmfdb_label, limit=100)),
            ("Download all stored data", url_for(".download_EC_all", label=self.lmfdb_label)),
            (
                "Download Magma code",
                url_for(
                    ".ec_code_download",
                    conductor=cond,
                    iso=iso,
                    number=num,
                    label=self.lmfdb_label,
                    download_type="magma",
                ),
            ),
            (
                "Download Sage code",
                url_for(
                    ".ec_code_download",
                    conductor=cond,
                    iso=iso,
                    number=num,
                    label=self.lmfdb_label,
                    download_type="sage",
                ),
            ),
            (
                "Download GP code",
                url_for(
                    ".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type="gp"
                ),
            ),
        ]

        self.plot = encode_plot(self.E.plot())
        self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot
        self.properties = [
            ("Label", self.lmfdb_label),
            (None, self.plot_link),
            ("Conductor", "\(%s\)" % data["conductor"]),
            ("Discriminant", "\(%s\)" % data["disc"]),
            ("j-invariant", "%s" % data["j_inv_latex"]),
            ("CM", "%s" % data["CM"]),
            ("Rank", "\(%s\)" % mw["rank"]),
            ("Torsion Structure", "\(%s\)" % mw["tor_struct"]),
        ]

        self.title = "Elliptic Curve %s (Cremona label %s)" % (self.lmfdb_label, self.label)

        self.bread = [
            ("Elliptic Curves", url_for("ecnf.index")),
            ("$\Q$", url_for(".rational_elliptic_curves")),
            ("%s" % N, url_for(".by_conductor", conductor=N)),
            ("%s" % iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)),
            ("%s" % num, " "),
        ]
Beispiel #9
0
    def make_curve(self):
        # To start with the data fields of self are just those from
        # the database.  We need to reformat these.

        # Old version: required constructing the actual elliptic curve
        # E, and computing some further data about it.

        # New version (May 2016): extra data fields now in the
        # database so we do not have to construct the curve or do any
        # computation with it on the fly.  As a failsafe the old way
        # is still included.

        data = self.data = {}
        data['ainvs'] = self.ainvs
        data['conductor'] = N = ZZ(self.conductor)
        data['j_invariant'] = QQ(str(self.jinv))
        data['j_inv_factor'] = latex(0)
        if data['j_invariant']:  # don't factor 0
            data['j_inv_factor'] = latex(data['j_invariant'].factor())
        data['j_inv_str'] = unicode(str(data['j_invariant']))
        data['j_inv_latex'] = web_latex(data['j_invariant'])

        # extract data about MW rank, generators, heights and torsion:
        self.make_mw()

        # get more data from the database entry

        data['equation'] = self.equation
        local_data = self.local_data
        D = self.signD * prod([ld['p']**ld['ord_disc'] for ld in local_data])
        data['disc'] = D
        Nfac = Factorization([(ZZ(ld['p']), ld['ord_cond'])
                              for ld in local_data])
        Dfac = Factorization([(ZZ(ld['p']), ld['ord_disc'])
                              for ld in local_data],
                             unit=ZZ(self.signD))

        data['minq_D'] = minqD = self.min_quad_twist['disc']
        minq_label = self.min_quad_twist['label']
        data['minq_label'] = db.ec_curves.lucky({'label': minq_label},
                                                'lmfdb_label')
        data['minq_info'] = '(itself)' if minqD == 1 else '(by %s)' % minqD
        if self.degree is None:
            data['degree'] = 0  # invalid, but will be displayed nicely
        else:
            data['degree'] = self.degree
        if self.number == 1:
            data['an'] = self.anlist
            data['ap'] = self.aplist
        else:
            r = db.ec_curves.lucky({'lmfdb_iso': self.lmfdb_iso, 'number': 1})
            data['an'] = r['anlist']
            data['ap'] = r['aplist']

        minq_N, minq_iso, minq_number = split_lmfdb_label(data['minq_label'])

        data['disc_factor'] = latex(Dfac)
        data['cond_factor'] = latex(Nfac)
        data['disc_latex'] = web_latex(D)
        data['cond_latex'] = web_latex(N)

        data['galois_images'] = [
            trim_galois_image_code(s) for s in self.mod_p_images
        ]
        data['non_maximal_primes'] = self.non_maximal_primes
        data['galois_data'] = [{
            'p': p,
            'image': im
        } for p, im in zip(data['non_maximal_primes'], data['galois_images'])]

        data['CMD'] = self.cm
        data['CM'] = "no"
        data['EndE'] = "\(\Z\)"
        if self.cm:
            data['cm_ramp'] = [
                p for p in ZZ(self.cm).support()
                if not p in self.non_maximal_primes
            ]
            data['cm_nramp'] = len(data['cm_ramp'])
            if data['cm_nramp'] == 1:
                data['cm_ramp'] = data['cm_ramp'][0]
            else:
                data['cm_ramp'] = ", ".join([str(p) for p in data['cm_ramp']])
            data['cm_sqf'] = ZZ(self.cm).squarefree_part()

            data['CM'] = "yes (\(D=%s\))" % data['CMD']
            if data['CMD'] % 4 == 0:
                d4 = ZZ(data['CMD']) // 4
                data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4
            else:
                data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD']
            data['ST'] = st_link_by_name(1, 2, 'N(U(1))')
        else:
            data['ST'] = st_link_by_name(1, 2, 'SU(2)')

        data['p_adic_primes'] = [
            p for i, p in enumerate(prime_range(5, 100))
            if (N * data['ap'][i]) % p != 0
        ]

        cond, iso, num = split_lmfdb_label(self.lmfdb_label)
        self.class_url = url_for(".by_double_iso_label",
                                 conductor=N,
                                 iso_label=iso)
        self.one_deg = ZZ(self.class_deg).is_prime()
        self.ncurves = db.ec_curves.count({'lmfdb_iso': self.lmfdb_iso})
        isodegs = [str(d) for d in self.isogeny_degrees if d > 1]
        if len(isodegs) < 3:
            data['isogeny_degrees'] = " and ".join(isodegs)
        else:
            data['isogeny_degrees'] = " and ".join(
                [", ".join(isodegs[:-1]), isodegs[-1]])

        if self.twoadic_gens:
            from sage.matrix.all import Matrix
            data['twoadic_gen_matrices'] = ','.join(
                [latex(Matrix(2, 2, M)) for M in self.twoadic_gens])
            data[
                'twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html"

        # Leading term of L-function & other BSD data
        self.make_bsd()

        # Optimality (the optimal curve in the class is the curve
        # whose Cremona label ends in '1' except for '990h' which was
        # labelled wrongly long ago)

        if self.iso == '990h':
            data['Gamma0optimal'] = bool(self.number == 3)
        else:
            data['Gamma0optimal'] = bool(self.number == 1)

        data['p_adic_data_exists'] = False
        if data['Gamma0optimal']:
            data['p_adic_data_exists'] = db.ec_padic.exists(
                {'lmfdb_iso': self.lmfdb_iso})

        # Iwasawa data (where present)

        self.make_iwasawa()

        # Torsion growth data (where present)

        self.make_torsion_growth()

        data['newform'] = web_latex(
            PowerSeriesRing(QQ, 'q')(data['an'], 20, check=True))
        data['newform_label'] = self.newform_label = newform_label(
            cond, 2, 1, iso)
        self.newform_link = url_for("emf.render_elliptic_modular_forms",
                                    level=cond,
                                    weight=2,
                                    character=1,
                                    label=iso)
        self.newform_exists_in_db = is_newform_in_db(self.newform_label)
        self._code = None

        self.class_url = url_for(".by_double_iso_label",
                                 conductor=N,
                                 iso_label=iso)
        self.friends = [('Isogeny class ' + self.lmfdb_iso, self.class_url),
                        ('Minimal quadratic twist %s %s' %
                         (data['minq_info'], data['minq_label']),
                         url_for(".by_triple_label",
                                 conductor=minq_N,
                                 iso_label=minq_iso,
                                 number=minq_number)),
                        ('All twists ',
                         url_for(".rational_elliptic_curves", jinv=self.jinv)),
                        ('L-function',
                         url_for("l_functions.l_function_ec_page",
                                 conductor_label=N,
                                 isogeny_class_label=iso))]

        if not self.cm:
            if N <= 300:
                self.friends += [('Symmetric square L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='2',
                                          conductor=N,
                                          isogeny=iso))]
            if N <= 50:
                self.friends += [('Symmetric cube L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='3',
                                          conductor=N,
                                          isogeny=iso))]
        if self.newform_exists_in_db:
            self.friends += [('Modular form ' + self.newform_label,
                              self.newform_link)]

        self.downloads = [('Download coefficients of q-expansion',
                           url_for(".download_EC_qexp",
                                   label=self.lmfdb_label,
                                   limit=1000)),
                          ('Download all stored data',
                           url_for(".download_EC_all",
                                   label=self.lmfdb_label)),
                          ('Download Magma code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='magma')),
                          ('Download SageMath code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='sage')),
                          ('Download GP code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='gp'))]

        try:
            self.plot = encode_plot(self.E.plot())
        except AttributeError:
            self.plot = encode_plot(EllipticCurve(data['ainvs']).plot())

        self.plot_link = '<a href="{0}"><img src="{0}" width="200" height="150"/></a>'.format(
            self.plot)
        self.properties = [('Label', self.lmfdb_label), (None, self.plot_link),
                           ('Conductor', '\(%s\)' % data['conductor']),
                           ('Discriminant', '\(%s\)' % data['disc']),
                           ('j-invariant', '%s' % data['j_inv_latex']),
                           ('CM', '%s' % data['CM']),
                           ('Rank', '\(%s\)' % self.mw['rank']),
                           ('Torsion Structure',
                            '\(%s\)' % self.mw['tor_struct'])]

        self.title = "Elliptic Curve %s (Cremona label %s)" % (
            self.lmfdb_label, self.label)

        self.bread = [('Elliptic Curves', url_for("ecnf.index")),
                      ('$\Q$', url_for(".rational_elliptic_curves")),
                      ('%s' % N, url_for(".by_conductor", conductor=N)),
                      ('%s' % iso,
                       url_for(".by_double_iso_label",
                               conductor=N,
                               iso_label=iso)), ('%s' % num, ' ')]
Beispiel #10
0
    def make_curve(self):
        # To start with the data fields of self are just those from
        # the database.  We need to reformat these.

        # Old version: required constructing the actual elliptic curve
        # E, and computing some further data about it.

        # New version (May 2016): extra data fields now in the
        # database so we do not have to construct the curve or do any
        # computation with it on the fly.  As a failsafe the old way
        # is still included.

        data = self.data = {}
        try:
            data['ainvs'] = [int(c) for c in self.xainvs[1:-1].split(',')]
        except AttributeError:
            data['ainvs'] = [int(ai) for ai in self.ainvs]
        data['conductor'] = N = ZZ(self.conductor)
        data['j_invariant'] = QQ(str(self.jinv))
        data['j_inv_factor'] = latex(0)
        if data['j_invariant']:  # don't factor 0
            data['j_inv_factor'] = latex(data['j_invariant'].factor())
        data['j_inv_str'] = unicode(str(data['j_invariant']))
        data['j_inv_latex'] = web_latex(data['j_invariant'])
        mw = self.mw = {}
        mw['rank'] = self.rank
        mw['int_points'] = ''
        if self.xintcoords:
            a1, a2, a3, a4, a6 = [ZZ(a) for a in data['ainvs']]

            def lift_x(x):
                f = ((x + a2) * x + a4) * x + a6
                b = (a1 * x + a3)
                d = (b * b + 4 * f).sqrt()
                return (x, (-b + d) / 2)

            mw['int_points'] = ', '.join(
                web_latex(lift_x(x)) for x in self.xintcoords)

        mw['generators'] = ''
        mw['heights'] = []
        if self.gens:
            mw['generators'] = [
                web_latex(tuple(P)) for P in parse_points(self.gens)
            ]

        mw['tor_order'] = self.torsion
        tor_struct = [int(c) for c in self.torsion_structure]
        if mw['tor_order'] == 1:
            mw['tor_struct'] = '\mathrm{Trivial}'
            mw['tor_gens'] = ''
        else:
            mw['tor_struct'] = ' \\times '.join(
                ['\Z/{%s}\Z' % n for n in tor_struct])
            mw['tor_gens'] = ', '.join(
                web_latex(tuple(P))
                for P in parse_points(self.torsion_generators))

        # try to get all the data we need from the database entry (now in self)
        try:
            data['equation'] = self.equation
            local_data = self.local_data
            D = self.signD * prod(
                [ld['p']**ld['ord_disc'] for ld in local_data])
            data['disc'] = D
            Nfac = Factorization([(ZZ(ld['p']), ld['ord_cond'])
                                  for ld in local_data])
            Dfac = Factorization([(ZZ(ld['p']), ld['ord_disc'])
                                  for ld in local_data],
                                 unit=ZZ(self.signD))

            data['minq_D'] = minqD = self.min_quad_twist['disc']
            minq_label = self.min_quad_twist['label']
            data['minq_label'] = db_ec().find_one(
                {'label': minq_label}, ['lmfdb_label'])['lmfdb_label']
            data['minq_info'] = '(itself)' if minqD == 1 else '(by %s)' % minqD
            try:
                data['degree'] = self.degree
            except AttributeError:
                data['degree'] = 0  # invalid, but will be displayed nicely
            mw['heights'] = self.heights
            if self.number == 1:
                data['an'] = self.anlist
                data['ap'] = self.aplist
            else:
                r = db_ec().find_one({
                    'lmfdb_iso': self.lmfdb_iso,
                    'number': 1
                }, ['anlist', 'aplist'])
                data['an'] = r['anlist']
                data['ap'] = r['aplist']

        # otherwise fall back to computing it from the curve
        except AttributeError:
            self.E = EllipticCurve(data['ainvs'])
            data['equation'] = web_latex(self.E)
            data['disc'] = D = self.E.discriminant()
            Nfac = N.factor()
            Dfac = D.factor()
            bad_primes = [p for p, e in Nfac]
            try:
                data['degree'] = self.degree
            except AttributeError:
                try:
                    data['degree'] = self.E.modular_degree()
                except RuntimeError:
                    data['degree'] = 0  # invalid, but will be displayed nicely
            minq, minqD = self.E.minimal_quadratic_twist()
            data['minq_D'] = minqD
            if minqD == 1:
                data['minq_label'] = self.lmfdb_label
                data['minq_info'] = '(itself)'
            else:
                # This relies on the minimal twist being in the
                # database, which is true when the database only
                # contains the Cremona database.  It would be a good
                # idea if, when the database is extended, we ensured
                # that for any curve included, all twists of smaller
                # conductor are also included.
                minq_ainvs = [str(c) for c in minq.ainvs()]
                data['minq_label'] = db_ec().find_one(
                    {
                        'jinv': str(self.E.j_invariant()),
                        'ainvs': minq_ainvs
                    }, ['lmfdb_label'])['lmfdb_label']
                data['minq_info'] = '(by %s)' % minqD

            if self.gens:
                self.generators = [self.E(g) for g in parse_points(self.gens)]
                mw['heights'] = [P.height() for P in self.generators]

            data['an'] = self.E.anlist(20, python_ints=True)
            data['ap'] = self.E.aplist(100, python_ints=True)
            self.local_data = local_data = []
            for p in bad_primes:
                ld = self.E.local_data(p, algorithm="generic")
                local_data_p = {}
                local_data_p['p'] = p
                local_data_p['cp'] = ld.tamagawa_number()
                local_data_p['kod'] = web_latex(ld.kodaira_symbol()).replace(
                    '$', '')
                local_data_p['red'] = ld.bad_reduction_type()
                rootno = -ld.bad_reduction_type()
                if rootno == 0:
                    rootno = self.E.root_number(p)
                local_data_p['rootno'] = rootno
                local_data_p['ord_cond'] = ld.conductor_valuation()
                local_data_p['ord_disc'] = ld.discriminant_valuation()
                local_data_p['ord_den_j'] = max(
                    0, -self.E.j_invariant().valuation(p))
                local_data.append(local_data_p)

        # If we got the data from the database, the root numbers may
        # not have been stored there, so we have to compute them.  If
        # there are additive primes this means constructing the curve.
        for ld in self.local_data:
            if not 'rootno' in ld:
                rootno = -ld['red']
                if rootno == 0:
                    try:
                        E = self.E
                    except AttributeError:
                        self.E = E = EllipticCurve(data['ainvs'])
                    rootno = E.root_number(ld['p'])
                ld['rootno'] = rootno

        minq_N, minq_iso, minq_number = split_lmfdb_label(data['minq_label'])

        data['disc_factor'] = latex(Dfac)
        data['cond_factor'] = latex(Nfac)
        data['disc_latex'] = web_latex(D)
        data['cond_latex'] = web_latex(N)

        data['galois_images'] = [
            trim_galois_image_code(s) for s in self.mod_p_images
        ]
        data['non_maximal_primes'] = self.non_maximal_primes
        data['galois_data'] = [{
            'p': p,
            'image': im
        } for p, im in zip(data['non_maximal_primes'], data['galois_images'])]

        data['CMD'] = self.cm
        data['CM'] = "no"
        data['EndE'] = "\(\Z\)"
        if self.cm:
            data['cm_ramp'] = [
                p for p in ZZ(self.cm).support()
                if not p in self.non_surjective_primes
            ]
            data['cm_nramp'] = len(data['cm_ramp'])
            if data['cm_nramp'] == 1:
                data['cm_ramp'] = data['cm_ramp'][0]
            else:
                data['cm_ramp'] = ", ".join([str(p) for p in data['cm_ramp']])
            data['cm_sqf'] = ZZ(self.cm).squarefree_part()

            data['CM'] = "yes (\(D=%s\))" % data['CMD']
            if data['CMD'] % 4 == 0:
                d4 = ZZ(data['CMD']) // 4
                data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4
            else:
                data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD']
            data['ST'] = st_link_by_name(1, 2, 'N(U(1))')
        else:
            data['ST'] = st_link_by_name(1, 2, 'SU(2)')

        data['p_adic_primes'] = [
            p for i, p in enumerate(prime_range(5, 100))
            if (N * data['ap'][i]) % p != 0
        ]

        cond, iso, num = split_lmfdb_label(self.lmfdb_label)
        self.class_url = url_for(".by_double_iso_label",
                                 conductor=N,
                                 iso_label=iso)
        self.one_deg = ZZ(self.class_deg).is_prime()
        self.ncurves = db_ec().count({'lmfdb_iso': self.lmfdb_iso})
        isodegs = [str(d) for d in self.isogeny_degrees if d > 1]
        if len(isodegs) < 3:
            data['isogeny_degrees'] = " and ".join(isodegs)
        else:
            data['isogeny_degrees'] = " and ".join(
                [", ".join(isodegs[:-1]), isodegs[-1]])

        if self.twoadic_gens:
            from sage.matrix.all import Matrix
            data['twoadic_gen_matrices'] = ','.join(
                [latex(Matrix(2, 2, M)) for M in self.twoadic_gens])
            data[
                'twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html"

        # Leading term of L-function & BSD data
        bsd = self.bsd = {}
        r = self.rank
        if r >= 2:
            bsd['lder_name'] = "L^{(%s)}(E,1)/%s!" % (r, r)
        elif r:
            bsd['lder_name'] = "L'(E,1)"
        else:
            bsd['lder_name'] = "L(E,1)"

        bsd['reg'] = self.regulator
        bsd['omega'] = self.real_period
        bsd['sha'] = int(0.1 + self.sha_an)
        bsd['lder'] = self.special_value

        # Optimality (the optimal curve in the class is the curve
        # whose Cremona label ends in '1' except for '990h' which was
        # labelled wrongly long ago)

        if self.iso == '990h':
            data['Gamma0optimal'] = bool(self.number == 3)
        else:
            data['Gamma0optimal'] = bool(self.number == 1)

        data['p_adic_data_exists'] = False
        if data['Gamma0optimal']:
            data['p_adic_data_exists'] = (padic_db().find({
                'lmfdb_iso':
                self.lmfdb_iso
            }).count()) > 0

        data['iwdata'] = []
        try:
            pp = [int(p) for p in self.iwdata]
            badp = [l['p'] for l in self.local_data]
            rtypes = [l['red'] for l in self.local_data]
            data[
                'iw_missing_flag'] = False  # flags that there is at least one "?" in the table
            data[
                'additive_shown'] = False  # flags that there is at least one additive prime in table
            for p in sorted(pp):
                rtype = ""
                if p in badp:
                    red = rtypes[badp.index(p)]
                    # Additive primes are excluded from the table
                    # if red==0:
                    #    continue
                    #rtype = ["nsmult","add", "smult"][1+red]
                    rtype = ["nonsplit", "add", "split"][1 + red]
                p = str(p)
                pdata = self.iwdata[p]
                if isinstance(pdata, type(u'?')):
                    if not rtype:
                        rtype = "ordinary" if pdata == "o?" else "ss"
                    if rtype == "add":
                        data['iwdata'] += [[p, rtype, "-", "-"]]
                        data['additive_shown'] = True
                    else:
                        data['iwdata'] += [[p, rtype, "?", "?"]]
                        data['iw_missing_flag'] = True
                else:
                    if len(pdata) == 2:
                        if not rtype:
                            rtype = "ordinary"
                        lambdas = str(pdata[0])
                        mus = str(pdata[1])
                    else:
                        rtype = "ss"
                        lambdas = ",".join([str(pdata[0]), str(pdata[1])])
                        mus = str(pdata[2])
                        mus = ",".join([mus, mus])
                    data['iwdata'] += [[p, rtype, lambdas, mus]]
        except AttributeError:
            # For curves with no Iwasawa data
            pass

        tamagawa_numbers = [ZZ(ld['cp']) for ld in local_data]
        cp_fac = [cp.factor() for cp in tamagawa_numbers]
        cp_fac = [
            latex(cp) if len(cp) < 2 else '(' + latex(cp) + ')'
            for cp in cp_fac
        ]
        bsd['tamagawa_factors'] = r'\cdot'.join(cp_fac)
        bsd['tamagawa_product'] = prod(tamagawa_numbers)

        # Torsion growth data

        data['torsion_growth_data_exists'] = False
        try:
            tg = self.tor_gro
            data['torsion_growth_data_exists'] = True
            data['tgx'] = tgextra = []
            # find all base-changes of this curve in the database, if any
            bcs = [
                res['label']
                for res in getDBConnection().elliptic_curves.nfcurves.find(
                    {'base_change': self.lmfdb_label},
                    projection={
                        'label': True,
                        '_id': False
                    })
            ]
            bcfs = [lab.split("-")[0] for lab in bcs]
            for F, T in tg.items():
                tg1 = {}
                tg1['bc'] = "Not in database"
                if ":" in F:
                    F = F.replace(":", ".")
                    field_data = nf_display_knowl(F, getDBConnection(),
                                                  field_pretty(F))
                    deg = int(F.split(".")[0])
                    bcc = [x for x, y in zip(bcs, bcfs) if y == F]
                    if bcc:
                        from lmfdb.ecnf.main import split_full_label
                        F, NN, I, C = split_full_label(bcc[0])
                        tg1['bc'] = bcc[0]
                        tg1['bc_url'] = url_for('ecnf.show_ecnf',
                                                nf=F,
                                                conductor_label=NN,
                                                class_label=I,
                                                number=C)
                else:
                    field_data = web_latex_split_on_pm(
                        coeff_to_poly(string2list(F)))
                    deg = F.count(",")
                tg1['d'] = deg
                tg1['f'] = field_data
                tg1['t'] = '\(' + ' \\times '.join(
                    ['\Z/{}\Z'.format(n) for n in T.split(",")]) + '\)'
                tg1['m'] = 0
                tgextra.append(tg1)

            tgextra.sort(key=lambda x: x['d'])
            data['ntgx'] = len(tgextra)
            lastd = 1
            for tg in tgextra:
                d = tg['d']
                if d != lastd:
                    tg['m'] = len([x for x in tgextra if x['d'] == d])
                    lastd = d
            data['tg_maxd'] = max(db_ecstats().find_one(
                {'_id': 'torsion_growth'})['degrees'])

        except AttributeError:
            pass  # we have no torsion growth data

        data['newform'] = web_latex(
            PowerSeriesRing(QQ, 'q')(data['an'], 20, check=True))
        data['newform_label'] = self.newform_label = newform_label(
            cond, 2, 1, iso)
        self.newform_link = url_for("emf.render_elliptic_modular_forms",
                                    level=cond,
                                    weight=2,
                                    character=1,
                                    label=iso)
        self.newform_exists_in_db = is_newform_in_db(self.newform_label)
        self._code = None

        self.class_url = url_for(".by_double_iso_label",
                                 conductor=N,
                                 iso_label=iso)
        self.friends = [('Isogeny class ' + self.lmfdb_iso, self.class_url),
                        ('Minimal quadratic twist %s %s' %
                         (data['minq_info'], data['minq_label']),
                         url_for(".by_triple_label",
                                 conductor=minq_N,
                                 iso_label=minq_iso,
                                 number=minq_number)),
                        ('All twists ',
                         url_for(".rational_elliptic_curves", jinv=self.jinv)),
                        ('L-function',
                         url_for("l_functions.l_function_ec_page",
                                 conductor_label=N,
                                 isogeny_class_label=iso))]
        if not self.cm:
            if N <= 300:
                self.friends += [('Symmetric square L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='2',
                                          conductor=N,
                                          isogeny=iso))]
            if N <= 50:
                self.friends += [('Symmetric cube L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='3',
                                          conductor=N,
                                          isogeny=iso))]
        if self.newform_exists_in_db:
            self.friends += [('Modular form ' + self.newform_label,
                              self.newform_link)]

        self.downloads = [('Download coefficients of q-expansion',
                           url_for(".download_EC_qexp",
                                   label=self.lmfdb_label,
                                   limit=1000)),
                          ('Download all stored data',
                           url_for(".download_EC_all",
                                   label=self.lmfdb_label)),
                          ('Download Magma code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='magma')),
                          ('Download Sage code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='sage')),
                          ('Download GP code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='gp'))]

        try:
            self.plot = encode_plot(self.E.plot())
        except AttributeError:
            self.plot = encode_plot(EllipticCurve(data['ainvs']).plot())

        self.plot_link = '<a href="{0}"><img src="{0}" width="200" height="150"/></a>'.format(
            self.plot)
        self.properties = [('Label', self.lmfdb_label), (None, self.plot_link),
                           ('Conductor', '\(%s\)' % data['conductor']),
                           ('Discriminant', '\(%s\)' % data['disc']),
                           ('j-invariant', '%s' % data['j_inv_latex']),
                           ('CM', '%s' % data['CM']),
                           ('Rank', '\(%s\)' % mw['rank']),
                           ('Torsion Structure', '\(%s\)' % mw['tor_struct'])]

        self.title = "Elliptic Curve %s (Cremona label %s)" % (
            self.lmfdb_label, self.label)

        self.bread = [('Elliptic Curves', url_for("ecnf.index")),
                      ('$\Q$', url_for(".rational_elliptic_curves")),
                      ('%s' % N, url_for(".by_conductor", conductor=N)),
                      ('%s' % iso,
                       url_for(".by_double_iso_label",
                               conductor=N,
                               iso_label=iso)), ('%s' % num, ' ')]
Beispiel #11
0
    def make_class(self):
        self.ainvs_str = self.ainvs
        self.ainvs = [int(a) for a in self.ainvs_str]
        self.E = EllipticCurve(self.ainvs)
        self.CM = self.E.has_cm()

        try:
            # Extract the isogeny degree matrix from the database
            size = len(self.isogeny_matrix)
            from sage.matrix.all import Matrix
            self.isogeny_matrix = Matrix(self.isogeny_matrix)
        except AttributeError:
            # Failsafe: construct it from scratch
            self.isogeny_matrix = self.E.isogeny_class(order="lmfdb").matrix()
            size = self.isogeny_matrix.nrows()
        self.ncurves = size

        # Create isogeny graph:
        self.graph = make_graph(self.isogeny_matrix)
        P = self.graph.plot(edge_labels=True)
        self.graph_img = encode_plot(P)
        self.graph_link = '<img src="%s" width="200" height="150"/>' % self.graph_img

        # Create a list of the curves in the class from the database
        self.db_curves = [self.E]
        self.optimal_flags = [False] * size
        self.degrees = [0] * size
        if self.degree:
            self.degrees[0] = self.degree
        else:
            try:
                self.degrees[0] = self.E.modular_degree()
            except RuntimeError:
                pass

        # Fill in the curves in the class by looking each one up in the db:

        self.cremona_labels = [self.label] + [0] * (size - 1)
        if self.number == 1:
            self.optimal_flags[0] = True
        for i in range(2, size + 1):
            Edata = db_ec().find_one({'lmfdb_label': self.lmfdb_iso + str(i)})
            Ei = EllipticCurve([int(a) for a in Edata['ainvs']])
            self.cremona_labels[i - 1] = Edata['label']
            if Edata['number'] == 1:
                self.optimal_flags[i - 1] = True
            if 'degree' in Edata:
                self.degrees[i - 1] = Edata['degree']
            else:
                try:
                    self.degrees[i - 1] = Ei.modular_degree()
                except RuntimeError:
                    pass
            self.db_curves.append(Ei)


        if self.iso == '990h':  # this isogeny class is labeled wrong in Cremona's tables
            self.optimal_flags = [False, False, True, False]

        self.isogeny_matrix_str = latex(matrix(self.isogeny_matrix))

        N, iso, number = split_lmfdb_label(self.lmfdb_iso)

        self.newform = web_latex(self.E.q_eigenform(10))
        self.newform_label = newform_label(N,2,1,iso)
        self.newform_link = url_for("emf.render_elliptic_modular_forms", level=N, weight=2, character=1, label=iso)
        self.newform_exists_in_db = is_newform_in_db(self.newform_label)

        self.lfunction_link = url_for("l_functions.l_function_ec_page", label=self.lmfdb_iso)

        self.curves = [dict([('label',self.lmfdb_iso + str(i + 1)),
                             ('url',url_for(".by_triple_label", conductor=N, iso_label=iso, number=i+1)),
                             ('cremona_label',self.cremona_labels[i]),
                             ('ainvs',str(list(c.ainvs()))),
                             ('torsion',c.torsion_order()),
                             ('degree',self.degrees[i]),
                             ('optimal',self.optimal_flags[i])])
                       for i, c in enumerate(self.db_curves)]

        self.friends =  [('L-function', self.lfunction_link)]
        if not self.CM:
            if int(N)<=300:
                self.friends += [('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', label=self.lmfdb_iso))]
            if int(N)<=50:
                self.friends += [('Symmetric cube L-function', url_for("l_functions.l_function_ec_sym_page", power='3', label=self.lmfdb_iso))]
        if self.newform_exists_in_db:
            self.friends +=  [('Modular form ' + self.newform_label, self.newform_link)]

        self.properties = [('Label', self.lmfdb_iso),
                           ('Number of curves', str(self.ncurves)),
                           ('Conductor', '\(%s\)' % N),
                           ('CM', '%s' % self.CM),
                           ('Rank', '\(%s\)' % self.rank),
                           ('Graph', ''),(None, self.graph_link)
                           ]


        self.downloads = [('Download coefficients of newform', url_for(".download_EC_qexp", label=self.lmfdb_iso, limit=1000)),
                         ('Download stored data for all curves', url_for(".download_EC_all", label=self.lmfdb_iso))]

        if self.lmfdb_iso == self.iso:
            self.title = "Elliptic Curve Isogeny Class %s" % self.lmfdb_iso
        else:
            self.title = "Elliptic Curve Isogeny Class %s (Cremona label %s)" % (self.lmfdb_iso, self.iso)

        self.bread = [('Elliptic Curves', url_for("ecnf.index")),
                      ('$\Q$', url_for(".rational_elliptic_curves")),
                      ('%s' % N, url_for(".by_conductor", conductor=N)),
                      ('%s' % iso, ' ')]
        self.code = {}
        self.code['show'] = {'sage':''} # use default show names
        self.code['class'] = {'sage':'E = EllipticCurve("%s1")\n'%(self.lmfdb_iso) + 'E.isogeny_class()\n'}
        self.code['curves'] = {'sage':'E.isogeny_class().curves'}
        self.code['rank'] = {'sage':'E.rank()'}
        self.code['q_eigenform'] = {'sage':'E.q_eigenform(10)'}
        self.code['matrix'] = {'sage':'E.isogeny_class().matrix()'}
        self.code['plot'] = {'sage':'E.isogeny_graph().plot(edge_labels=True)'}
Beispiel #12
0
    def make_curve(self):
        # To start with the data fields of self are just those from
        # the database.  We need to reformat these.

        # Old version: required constructing the actual elliptic curve
        # E, and computing some further data about it.

        # New version (May 2016): extra data fields now in the
        # database so we do not have to construct the curve or do any
        # computation with it on the fly.  As a failsafe the old way
        # is still included.

        data = self.data = {}
        try:
            data['ainvs'] = [int(c) for c in self.xainvs[1:-1].split(',')]
        except AttributeError:
            data['ainvs'] = [int(ai) for ai in self.ainvs]
        data['conductor'] = N = ZZ(self.conductor)
        data['j_invariant'] = QQ(str(self.jinv))
        data['j_inv_factor'] = latex(0)
        if data['j_invariant']: # don't factor 0
            data['j_inv_factor'] = latex(data['j_invariant'].factor())
        data['j_inv_str'] = unicode(str(data['j_invariant']))
        data['j_inv_latex'] = web_latex(data['j_invariant'])
        mw = self.mw = {}
        mw['rank'] = self.rank
        mw['int_points'] = ''
        if self.xintcoords:
            a1, a2, a3, a4, a6 = [ZZ(a) for a in data['ainvs']]
            def lift_x(x):
                f = ((x + a2) * x + a4) * x + a6
                b = (a1*x + a3)
                d = (b*b + 4*f).sqrt()
                return (x, (-b+d)/2)
            mw['int_points'] = ', '.join(web_latex(lift_x(x)) for x in self.xintcoords)

        mw['generators'] = ''
        mw['heights'] = []
        if self.gens:
            mw['generators'] = [web_latex(tuple(P)) for P in parse_points(self.gens)]

        mw['tor_order'] = self.torsion
        tor_struct = [int(c) for c in self.torsion_structure]
        if mw['tor_order'] == 1:
            mw['tor_struct'] = '\mathrm{Trivial}'
            mw['tor_gens'] = ''
        else:
            mw['tor_struct'] = ' \\times '.join(['\Z/{%s}\Z' % n for n in tor_struct])
            mw['tor_gens'] = ', '.join(web_latex(tuple(P)) for P in parse_points(self.torsion_generators))

        # try to get all the data we need from the database entry (now in self)
        try:
            data['equation'] = self.equation
            local_data = self.local_data
            badprimes = [ZZ(ld['p']) for ld in local_data]
            D = self.signD * prod([ld['p']**ld['ord_disc'] for ld in local_data])
            data['disc'] = D
            Nfac = Factorization([(ZZ(ld['p']),ld['ord_cond']) for ld in local_data])
            Dfac = Factorization([(ZZ(ld['p']),ld['ord_disc']) for ld in local_data], unit=ZZ(self.signD))

            data['minq_D'] = minqD = self.min_quad_twist['disc']
            minq_label = self.min_quad_twist['label']
            data['minq_label'] = db_ec().find_one({'label':minq_label}, ['lmfdb_label'])['lmfdb_label']
            data['minq_info'] = '(itself)' if minqD==1 else '(by %s)' % minqD
            try:
                data['degree'] = self.degree
            except AttributeError:
                data['degree']  =0 # invalid, but will be displayed nicely
            mw['heights'] = self.heights
            if self.number == 1:
                data['an'] = self.anlist
                data['ap'] = self.aplist
            else:
                r = db_ec().find_one({'lmfdb_iso':self.lmfdb_iso, 'number':1}, ['anlist','aplist'])
                data['an'] = r['anlist']
                data['ap'] = r['aplist']

        # otherwise fall back to computing it from the curve
        except AttributeError:
            print("Falling back to constructing E")
            self.E = EllipticCurve(data['ainvs'])
            data['equation'] = web_latex(self.E)
            data['disc'] = D = self.E.discriminant()
            Nfac = N.factor()
            Dfac = D.factor()
            bad_primes = [p for p,e in Nfac]
            try:
                data['degree'] = self.degree
            except AttributeError:
                try:
                    data['degree'] = self.E.modular_degree()
                except RuntimeError:
                    data['degree'] = 0  # invalid, but will be displayed nicely
            minq, minqD = self.E.minimal_quadratic_twist()
            data['minq_D'] = minqD
            if minqD == 1:
                data['minq_label'] = self.lmfdb_label
                data['minq_info'] = '(itself)'
            else:
                # This relies on the minimal twist being in the
                # database, which is true when the database only
                # contains the Cremona database.  It would be a good
                # idea if, when the database is extended, we ensured
                # that for any curve included, all twists of smaller
                # conductor are also included.
                minq_ainvs = [str(c) for c in minq.ainvs()]
                data['minq_label'] = db_ec().find_one({'jinv':str(self.E.j_invariant()),
                                                       'ainvs': minq_ainvs},['lmfdb_label'])['lmfdb_label']
                data['minq_info'] = '(by %s)' % minqD

            if self.gens:
                self.generators = [self.E(g) for g in parse_points(self.gens)]
                mw['heights'] = [P.height() for P in self.generators]

            data['an'] = self.E.anlist(20,python_ints=True)
            data['ap'] = self.E.aplist(100,python_ints=True)
            self.local_data = local_data = []
            for p in bad_primes:
                ld = self.E.local_data(p, algorithm="generic")
                local_data_p = {}
                local_data_p['p'] = p
                local_data_p['cp'] = ld.tamagawa_number()
                local_data_p['kod'] = web_latex(ld.kodaira_symbol()).replace('$', '')
                local_data_p['red'] = ld.bad_reduction_type()
                local_data_p['ord_cond'] = ld.conductor_valuation()
                local_data_p['ord_disc'] = ld.discriminant_valuation()
                local_data_p['ord_den_j'] = max(0,-self.E.j_invariant().valuation(p))
                local_data.append(local_data_p)

        jfac = Factorization([(ZZ(ld['p']),ld['ord_den_j']) for ld in local_data])

        minq_N, minq_iso, minq_number = split_lmfdb_label(data['minq_label'])

        data['disc_factor'] = latex(Dfac)
        data['cond_factor'] =latex(Nfac)
        data['disc_latex'] = web_latex(D)
        data['cond_latex'] = web_latex(N)

        data['CMD'] = self.cm
        data['CM'] = "no"
        data['EndE'] = "\(\Z\)"
        if self.cm:
            data['CM'] = "yes (\(D=%s\))" % data['CMD']
            if data['CMD']%4==0:
                d4 = ZZ(data['CMD'])//4
                data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4
            else:
                data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD']
            data['ST'] = '<a href="%s">$%s$</a>' % (url_for('st.by_label', label='1.2.N(U(1))'),'N(\\mathrm{U}(1))')
        else:
            data['ST'] = '<a href="%s">$%s$</a>' % (url_for('st.by_label', label='1.2.SU(2)'),'\\mathrm{SU}(2)')

        data['p_adic_primes'] = [p for i,p in enumerate(sage.all.prime_range(5, 100))
                                 if (N*data['ap'][i]) %p !=0]

        try:
            data['galois_images'] = [trim_galois_image_code(s) for s in self.galois_images]
            data['non_surjective_primes'] = self.non_surjective_primes
        except AttributeError:
            #print "No Galois image data"
            data['galois_images'] = []
            data['non_surjective_primes'] = []

        data['galois_data'] = [{'p': p,'image': im }
                               for p,im in zip(data['non_surjective_primes'],
                                               data['galois_images'])]

        if self.twoadic_gens:
            from sage.matrix.all import Matrix
            data['twoadic_gen_matrices'] = ','.join([latex(Matrix(2,2,M)) for M in self.twoadic_gens])
            data['twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html"

        # Leading term of L-function & BSD data
        bsd = self.bsd = {}
        r = self.rank
        if r >= 2:
            bsd['lder_name'] = "L^{(%s)}(E,1)/%s!" % (r,r)
        elif r:
            bsd['lder_name'] = "L'(E,1)"
        else:
            bsd['lder_name'] = "L(E,1)"

        bsd['reg'] = self.regulator
        bsd['omega'] = self.real_period
        bsd['sha'] = int(0.1+self.sha_an)
        bsd['lder'] = self.special_value

        # Optimality (the optimal curve in the class is the curve
        # whose Cremona label ends in '1' except for '990h' which was
        # labelled wrongly long ago)

        if self.iso == '990h':
            data['Gamma0optimal'] = bool(self.number == 3)
        else:
            data['Gamma0optimal'] = bool(self.number == 1)


        data['p_adic_data_exists'] = False
        if data['Gamma0optimal']:
            data['p_adic_data_exists'] = (padic_db().find({'lmfdb_iso': self.lmfdb_iso}).count()) > 0

        tamagawa_numbers = [ZZ(ld['cp']) for ld in local_data]
        cp_fac = [cp.factor() for cp in tamagawa_numbers]
        cp_fac = [latex(cp) if len(cp)<2 else '('+latex(cp)+')' for cp in cp_fac]
        bsd['tamagawa_factors'] = r'\cdot'.join(cp_fac)
        bsd['tamagawa_product'] = sage.misc.all.prod(tamagawa_numbers)

        cond, iso, num = split_lmfdb_label(self.lmfdb_label)
        data['newform'] =  web_latex(PowerSeriesRing(QQ, 'q')(data['an'], 20, check=True))
        data['newform_label'] = self.newform_label = newform_label(cond,2,1,iso)
        self.newform_link = url_for("emf.render_elliptic_modular_forms", level=cond, weight=2, character=1, label=iso)
        self.newform_exists_in_db = is_newform_in_db(self.newform_label)
        self._code = None

        self.friends = [
            ('Isogeny class ' + self.lmfdb_iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)),
            ('Minimal quadratic twist %s %s' % (data['minq_info'], data['minq_label']), url_for(".by_triple_label", conductor=minq_N, iso_label=minq_iso, number=minq_number)),
            ('All twists ', url_for(".rational_elliptic_curves", jinv=self.jinv)),
            ('L-function', url_for("l_functions.l_function_ec_page", label=self.lmfdb_label))]
        if not self.cm:
            if N<=300:
                self.friends += [('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', label=self.lmfdb_iso))]
            if N<=50:
                self.friends += [('Symmetric cube L-function', url_for("l_functions.l_function_ec_sym_page", power='3', label=self.lmfdb_iso))]
        if self.newform_exists_in_db:
            self.friends += [('Modular form ' + self.newform_label, self.newform_link)]

        self.downloads = [('Download coefficients of q-expansion', url_for(".download_EC_qexp", label=self.lmfdb_label, limit=1000)),
                          ('Download all stored data', url_for(".download_EC_all", label=self.lmfdb_label)),
                          ('Download Magma code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='magma')),
                          ('Download Sage code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='sage')),
                          ('Download GP code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='gp'))
        ]

        try:
            self.plot = encode_plot(self.E.plot())
        except AttributeError:
            self.plot = encode_plot(EllipticCurve(data['ainvs']).plot())

        self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot
        self.properties = [('Label', self.lmfdb_label),
                           (None, self.plot_link),
                           ('Conductor', '\(%s\)' % data['conductor']),
                           ('Discriminant', '\(%s\)' % data['disc']),
                           ('j-invariant', '%s' % data['j_inv_latex']),
                           ('CM', '%s' % data['CM']),
                           ('Rank', '\(%s\)' % mw['rank']),
                           ('Torsion Structure', '\(%s\)' % mw['tor_struct'])
                           ]

        self.title = "Elliptic Curve %s (Cremona label %s)" % (self.lmfdb_label, self.label)

        self.bread = [('Elliptic Curves', url_for("ecnf.index")),
                           ('$\Q$', url_for(".rational_elliptic_curves")),
                           ('%s' % N, url_for(".by_conductor", conductor=N)),
                           ('%s' % iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)),
                           ('%s' % num,' ')]
Beispiel #13
0
    def make_curve(self):
        # To start with the data fields of self are just those from
        # the database.  We need to reformat these.

        # Old version: required constructing the actual elliptic curve
        # E, and computing some further data about it.

        # New version (May 2016): extra data fields now in the
        # database so we do not have to construct the curve or do any
        # computation with it on the fly.  As a failsafe the old way
        # is still included.

        data = self.data = {}
        data['ainvs'] = self.ainvs
        data['conductor'] = N = ZZ(self.conductor)
        data['j_invariant'] = QQ(str(self.jinv))
        data['j_inv_factor'] = latex(0)
        if data['j_invariant']: # don't factor 0
            data['j_inv_factor'] = latex(data['j_invariant'].factor())
        data['j_inv_str'] = unicode(str(data['j_invariant']))
        data['j_inv_latex'] = web_latex(data['j_invariant'])

        # extract data about MW rank, generators, heights and torsion:
        self.make_mw()

        # get more data from the database entry

        data['equation'] = self.equation
        local_data = self.local_data
        D = self.signD * prod([ld['p']**ld['ord_disc'] for ld in local_data])
        data['disc'] = D
        Nfac = Factorization([(ZZ(ld['p']),ld['ord_cond']) for ld in local_data])
        Dfac = Factorization([(ZZ(ld['p']),ld['ord_disc']) for ld in local_data], unit=ZZ(self.signD))

        data['minq_D'] = minqD = self.min_quad_twist['disc']
        minq_label = self.min_quad_twist['label']
        data['minq_label'] = db.ec_curves.lucky({'label':minq_label}, 'lmfdb_label')
        data['minq_info'] = '(itself)' if minqD==1 else '(by %s)' % minqD
        if self.degree is None:
            data['degree'] = 0 # invalid, but will be displayed nicely
        else:
            data['degree'] = self.degree
        if self.number == 1:
            data['an'] = self.anlist
            data['ap'] = self.aplist
        else:
            r = db.ec_curves.lucky({'lmfdb_iso':self.lmfdb_iso, 'number':1})
            data['an'] = r['anlist']
            data['ap'] = r['aplist']

        minq_N, minq_iso, minq_number = split_lmfdb_label(data['minq_label'])

        data['disc_factor'] = latex(Dfac)
        data['cond_factor'] =latex(Nfac)
        data['disc_latex'] = web_latex(D)
        data['cond_latex'] = web_latex(N)

        data['galois_images'] = [trim_galois_image_code(s) for s in self.mod_p_images]
        data['non_maximal_primes'] = self.non_maximal_primes
        data['galois_data'] = [{'p': p,'image': im }
                               for p,im in zip(data['non_maximal_primes'],
                                               data['galois_images'])]

        data['CMD'] = self.cm
        data['CM'] = "no"
        data['EndE'] = "\(\Z\)"
        if self.cm:
            data['cm_ramp'] = [p for p in ZZ(self.cm).support() if not p in self.non_maximal_primes]
            data['cm_nramp'] = len(data['cm_ramp'])
            if data['cm_nramp']==1:
                data['cm_ramp'] = data['cm_ramp'][0]
            else:
                data['cm_ramp'] = ", ".join([str(p) for p in data['cm_ramp']])
            data['cm_sqf'] = ZZ(self.cm).squarefree_part()

            data['CM'] = "yes (\(D=%s\))" % data['CMD']
            if data['CMD']%4==0:
                d4 = ZZ(data['CMD'])//4
                data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4
            else:
                data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD']
            data['ST'] = st_link_by_name(1,2,'N(U(1))')
        else:
            data['ST'] = st_link_by_name(1,2,'SU(2)')

        data['p_adic_primes'] = [p for i,p in enumerate(prime_range(5, 100))
                                 if (N*data['ap'][i]) %p !=0]

        cond, iso, num = split_lmfdb_label(self.lmfdb_label)
        self.class_url = url_for(".by_double_iso_label", conductor=N, iso_label=iso)
        self.one_deg = ZZ(self.class_deg).is_prime()
        self.ncurves = db.ec_curves.count({'lmfdb_iso':self.lmfdb_iso})
        isodegs = [str(d) for d in self.isogeny_degrees if d>1]
        if len(isodegs)<3:
            data['isogeny_degrees'] = " and ".join(isodegs)
        else:
            data['isogeny_degrees'] = " and ".join([", ".join(isodegs[:-1]),isodegs[-1]])


        if self.twoadic_gens:
            from sage.matrix.all import Matrix
            data['twoadic_gen_matrices'] = ','.join([latex(Matrix(2,2,M)) for M in self.twoadic_gens])
            data['twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html"

        # Leading term of L-function & other BSD data
        self.make_bsd()

        # Optimality (the optimal curve in the class is the curve
        # whose Cremona label ends in '1' except for '990h' which was
        # labelled wrongly long ago)

        if self.iso == '990h':
            data['Gamma0optimal'] = bool(self.number == 3)
        else:
            data['Gamma0optimal'] = bool(self.number == 1)


        data['p_adic_data_exists'] = False
        if data['Gamma0optimal']:
            data['p_adic_data_exists'] = db.ec_padic.exists({'lmfdb_iso': self.lmfdb_iso})

        # Iwasawa data (where present)

        self.make_iwasawa()

        # Torsion growth data (where present)

        self.make_torsion_growth()

        data['newform'] =  web_latex(PowerSeriesRing(QQ, 'q')(data['an'], 20, check=True))
        data['newform_label'] = self.newform_label = newform_label(cond,2,1,iso)
        self.newform_link = url_for("emf.render_elliptic_modular_forms", level=cond, weight=2, character=1, label=iso)
        self.newform_exists_in_db = is_newform_in_db(self.newform_label)
        self._code = None

        self.class_url = url_for(".by_double_iso_label", conductor=N, iso_label=iso)
        self.friends = [
            ('Isogeny class ' + self.lmfdb_iso, self.class_url),
            ('Minimal quadratic twist %s %s' % (data['minq_info'], data['minq_label']), url_for(".by_triple_label", conductor=minq_N, iso_label=minq_iso, number=minq_number)),
            ('All twists ', url_for(".rational_elliptic_curves", jinv=self.jinv)),
            ('L-function', url_for("l_functions.l_function_ec_page", conductor_label = N, isogeny_class_label = iso))]

        if not self.cm:
            if N<=300:
                self.friends += [('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', conductor = N, isogeny = iso))]
            if N<=50:
                self.friends += [('Symmetric cube L-function', url_for("l_functions.l_function_ec_sym_page", power='3', conductor = N, isogeny = iso))]
        if self.newform_exists_in_db:
            self.friends += [('Modular form ' + self.newform_label, self.newform_link)]

        self.downloads = [('Download coefficients of q-expansion', url_for(".download_EC_qexp", label=self.lmfdb_label, limit=1000)),
                          ('Download all stored data', url_for(".download_EC_all", label=self.lmfdb_label)),
                          ('Download Magma code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='magma')),
                          ('Download SageMath code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='sage')),
                          ('Download GP code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='gp'))
        ]

        try:
            self.plot = encode_plot(self.E.plot())
        except AttributeError:
            self.plot = encode_plot(EllipticCurve(data['ainvs']).plot())


        self.plot_link = '<a href="{0}"><img src="{0}" width="200" height="150"/></a>'.format(self.plot)
        self.properties = [('Label', self.lmfdb_label),
                           (None, self.plot_link),
                           ('Conductor', '\(%s\)' % data['conductor']),
                           ('Discriminant', '\(%s\)' % data['disc']),
                           ('j-invariant', '%s' % data['j_inv_latex']),
                           ('CM', '%s' % data['CM']),
                           ('Rank', '\(%s\)' % self.mw['rank']),
                           ('Torsion Structure', '\(%s\)' % self.mw['tor_struct'])
                           ]

        self.title = "Elliptic Curve %s (Cremona label %s)" % (self.lmfdb_label, self.label)

        self.bread = [('Elliptic Curves', url_for("ecnf.index")),
                           ('$\Q$', url_for(".rational_elliptic_curves")),
                           ('%s' % N, url_for(".by_conductor", conductor=N)),
                           ('%s' % iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)),
                           ('%s' % num,' ')]
Beispiel #14
0
    def make_class(self):
        self.ainvs_str = self.ainvs
        self.ainvs = [int(a) for a in self.ainvs_str]
        self.E = EllipticCurve(self.ainvs)
        self.CM = self.E.has_cm()

        try:
            # Extract the isogeny degree matrix from the database
            size = len(self.isogeny_matrix)
            from sage.matrix.all import Matrix

            self.isogeny_matrix = Matrix(self.isogeny_matrix)
        except AttributeError:
            # Failsafe: construct it from scratch
            self.isogeny_matrix = self.E.isogeny_class(order="lmfdb").matrix()
            size = self.isogeny_matrix.nrows()
        self.ncurves = size

        # Create isogeny graph:
        self.graph = make_graph(self.isogeny_matrix)
        P = self.graph.plot(edge_labels=True)
        self.graph_img = encode_plot(P)
        self.graph_link = '<img src="%s" width="200" height="150"/>' % self.graph_img

        # Create a list of the curves in the class from the database
        self.db_curves = [self.E]
        self.optimal_flags = [False] * size
        self.degrees = [0] * size
        if self.degree:
            self.degrees[0] = self.degree
        else:
            try:
                self.degrees[0] = self.E.modular_degree()
            except RuntimeError:
                pass

        # Fill in the curves in the class by looking each one up in the db:

        self.cremona_labels = [self.label] + [0] * (size - 1)
        if self.number == 1:
            self.optimal_flags[0] = True
        for i in range(2, size + 1):
            Edata = db_ec().find_one({"lmfdb_label": self.lmfdb_iso + str(i)})
            Ei = EllipticCurve([int(a) for a in Edata["ainvs"]])
            self.cremona_labels[i - 1] = Edata["label"]
            if Edata["number"] == 1:
                self.optimal_flags[i - 1] = True
            if "degree" in Edata:
                self.degrees[i - 1] = Edata["degree"]
            else:
                try:
                    self.degrees[i - 1] = Ei.modular_degree()
                except RuntimeError:
                    pass
            self.db_curves.append(Ei)

        if self.iso == "990h":  # this isogeny class is labeled wrong in Cremona's tables
            self.optimal_flags = [False, False, True, False]

        self.isogeny_matrix_str = latex(matrix(self.isogeny_matrix))

        N, iso, number = split_lmfdb_label(self.lmfdb_iso)

        self.newform = web_latex(self.E.q_eigenform(10))
        self.newform_label = newform_label(N, 2, 1, iso)
        self.newform_link = url_for("emf.render_elliptic_modular_forms", level=N, weight=2, character=1, label=iso)
        newform_exists_in_db = is_newform_in_db(self.newform_label)

        self.lfunction_link = url_for("l_functions.l_function_ec_page", label=self.lmfdb_iso)

        self.curves = [
            dict(
                [
                    ("label", self.lmfdb_iso + str(i + 1)),
                    ("url", url_for(".by_triple_label", conductor=N, iso_label=iso, number=i + 1)),
                    ("cremona_label", self.cremona_labels[i]),
                    ("ainvs", str(list(c.ainvs()))),
                    ("torsion", c.torsion_order()),
                    ("degree", self.degrees[i]),
                    ("optimal", self.optimal_flags[i]),
                ]
            )
            for i, c in enumerate(self.db_curves)
        ]

        self.friends = [("L-function", self.lfunction_link)]
        if not self.CM:
            self.friends += [
                (
                    "Symmetric square L-function",
                    url_for("l_functions.l_function_ec_sym_page", power="2", label=self.lmfdb_iso),
                ),
                (
                    "Symmetric 4th power L-function",
                    url_for("l_functions.l_function_ec_sym_page", power="4", label=self.lmfdb_iso),
                ),
            ]
        if newform_exists_in_db:
            self.friends += [("Modular form " + self.newform_label, self.newform_link)]

        self.properties = [
            ("Label", self.lmfdb_iso),
            ("Number of curves", str(self.ncurves)),
            ("Conductor", "\(%s\)" % N),
            ("CM", "%s" % self.CM),
            ("Rank", "\(%s\)" % self.rank),
            ("Graph", ""),
            (None, self.graph_link),
        ]

        self.downloads = [
            ("Download coefficients of newform", url_for(".download_EC_qexp", label=self.lmfdb_iso, limit=100)),
            ("Download stored data for all curves", url_for(".download_EC_all", label=self.lmfdb_iso)),
        ]

        if self.lmfdb_iso == self.iso:
            self.title = "Elliptic Curve Isogeny Class %s" % self.lmfdb_iso
        else:
            self.title = "Elliptic Curve Isogeny Class %s (Cremona label %s)" % (self.lmfdb_iso, self.iso)

        self.bread = [
            ("Elliptic Curves", url_for("ecnf.index")),
            ("$\Q$", url_for(".rational_elliptic_curves")),
            ("%s" % N, url_for(".by_conductor", conductor=N)),
            ("%s" % iso, " "),
        ]
Beispiel #15
0
    def make_curve(self):
        # To start with the data fields of self are just those from
        # the database.  We need to reformat these, construct the
        # actual elliptic curve E, and compute some further (easy)
        # data about it.
        #

        # Weierstrass equation

        data = self.data = {}
        data['ainvs'] = [int(ai) for ai in self.ainvs]
        self.E = EllipticCurve(data['ainvs'])
        data['equation'] = web_latex(self.E)

        # conductor, j-invariant and discriminant

        data['conductor'] = N = ZZ(self.conductor)
        bad_primes = N.prime_factors()
        try:
            data['j_invariant'] = QQ(str(self.jinv))
        except KeyError:
            data['j_invariant'] = self.E.j_invariant()
        data['j_inv_factor'] = latex(0)
        if data['j_invariant']:
            data['j_inv_factor'] = latex(data['j_invariant'].factor())
        data['j_inv_str'] = unicode(str(data['j_invariant']))
        data['j_inv_latex'] = web_latex(data['j_invariant'])
        data['disc'] = D = self.E.discriminant()
        data['disc_latex'] = web_latex(data['disc'])
        data['disc_factor'] = latex(data['disc'].factor())
        data['cond_factor'] = latex(N.factor())
        data['cond_latex'] = web_latex(N)

        # CM and endomorphism ring

        data['CMD'] = self.cm
        data['CM'] = "no"
        data['EndE'] = "\(\Z\)"
        if self.cm:
            data['CM'] = "yes (\(D=%s\))" % data['CMD']
            if data['CMD'] % 4 == 0:
                d4 = ZZ(data['CMD']) // 4
                data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4
            else:
                data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD']
            data['ST'] = '<a href="%s">$%s$</a>' % (url_for(
                'st.by_label', label='1.2.N(U(1))'), 'N(\\mathrm{U}(1))')
        else:
            data['ST'] = '<a href="%s">$%s$</a>' % (url_for(
                'st.by_label', label='1.2.SU(2)'), '\\mathrm{SU}(2)')

        # modular degree

        try:
            data['degree'] = self.degree
        except AttributeError:
            try:
                data['degree'] = self.E.modular_degree()
            except RuntimeError:
                data['degree']  # invalid, but will be displayed nicely

        # Minimal quadratic twist

        E_pari = self.E.pari_curve()
        from sage.libs.pari.all import PariError
        try:
            minq, minqD = self.E.minimal_quadratic_twist()
        except PariError:  # this does occur with 164411a1
            ec.debug(
                "PariError computing minimal quadratic twist of elliptic curve %s"
                % lmfdb_label)
            minq = self.E
            minqD = 1
        data['minq_D'] = minqD
        if self.E == minq:
            data['minq_label'] = self.lmfdb_label
            data['minq_info'] = '(itself)'
        else:
            minq_ainvs = [str(c) for c in minq.ainvs()]
            data['minq_label'] = db_ec().find_one({
                'jinv':
                str(self.E.j_invariant()),
                'ainvs':
                minq_ainvs
            })['lmfdb_label']
            data['minq_info'] = '(by %s)' % minqD

        minq_N, minq_iso, minq_number = split_lmfdb_label(data['minq_label'])

        # rational and integral points

        mw = self.mw = {}

        xintpoints_projective = [self.E.lift_x(x) for x in self.xintcoords]
        xintpoints = [P.xy() for P in xintpoints_projective]
        mw['int_points'] = ', '.join(web_latex(P) for P in xintpoints)

        # Generators of infinite order

        mw['rank'] = self.rank
        try:
            self.generators = [self.E(g) for g in parse_points(self.gens)]
            mw['generators'] = [web_latex(P.xy()) for P in self.generators]
            mw['heights'] = [P.height() for P in self.generators]
        except AttributeError:
            mw['generators'] = ''
            mw['heights'] = []

        # Torsion subgroup: order, structure, generators

        mw['tor_order'] = self.torsion
        tor_struct = [int(c) for c in self.torsion_structure]
        if mw['tor_order'] == 1:
            mw['tor_struct'] = '\mathrm{Trivial}'
            mw['tor_gens'] = ''
        else:
            mw['tor_struct'] = ' \\times '.join(
                ['\Z/{%s}\Z' % n for n in tor_struct])
            mw['tor_gens'] = ', '.join(
                web_latex(self.E(g).xy())
                for g in parse_points(self.torsion_generators))

        # Images of Galois representations

        try:
            data['galois_images'] = [
                trim_galois_image_code(s) for s in self.galois_images
            ]
            data['non_surjective_primes'] = self.non_surjective_primes
        except AttributeError:
            #print "No Galois image data"
            data['galois_images'] = []
            data['non_surjective_primes'] = []

        data['galois_data'] = [{
            'p': p,
            'image': im
        } for p, im in zip(data['non_surjective_primes'],
                           data['galois_images'])]

        if self.twoadic_gens:
            from sage.matrix.all import Matrix
            data['twoadic_gen_matrices'] = ','.join(
                [latex(Matrix(2, 2, M)) for M in self.twoadic_gens])
            data[
                'twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html"
        # Leading term of L-function & BSD data

        bsd = self.bsd = {}

        r = self.rank
        if r >= 2:
            bsd['lder_name'] = "L^{(%s)}(E,1)/%s!" % (r, r)
        elif r:
            bsd['lder_name'] = "L'(E,1)"
        else:
            bsd['lder_name'] = "L(E,1)"

        bsd['reg'] = self.regulator
        bsd['omega'] = self.real_period
        bsd['sha'] = int(0.1 + self.sha_an)
        bsd['lder'] = self.special_value

        # Optimality (the optimal curve in the class is the curve
        # whose Cremona label ends in '1' except for '990h' which was
        # labelled wrongly long ago)

        if self.iso == '990h':
            data['Gamma0optimal'] = bool(self.number == 3)
        else:
            data['Gamma0optimal'] = bool(self.number == 1)

        data['p_adic_data_exists'] = False
        if data['Gamma0optimal']:
            data['p_adic_data_exists'] = (padic_db().find({
                'lmfdb_iso':
                self.lmfdb_iso
            }).count()) > 0
        data['p_adic_primes'] = [
            p for p in sage.all.prime_range(5, 100)
            if self.E.is_ordinary(p) and not p.divides(N)
        ]

        # Local data

        local_data = self.local_data = []
        # if we use E.tamagawa_numbers() it calls E.local_data(p) which
        # used to crash on some curves e.g. 164411a1
        tamagawa_numbers = []
        for p in bad_primes:
            local_info = self.E.local_data(p, algorithm="generic")
            local_data_p = {}
            local_data_p['p'] = p
            local_data_p['tamagawa_number'] = local_info.tamagawa_number()
            tamagawa_numbers.append(ZZ(local_info.tamagawa_number()))
            local_data_p['kodaira_symbol'] = web_latex(
                local_info.kodaira_symbol()).replace('$', '')
            local_data_p['reduction_type'] = local_info.bad_reduction_type()
            local_data_p['ord_cond'] = local_info.conductor_valuation()
            local_data_p['ord_disc'] = local_info.discriminant_valuation()
            local_data_p['ord_den_j'] = max(0,
                                            -self.E.j_invariant().valuation(p))
            local_data.append(local_data_p)

        cp_fac = [cp.factor() for cp in tamagawa_numbers]
        cp_fac = [
            latex(cp) if len(cp) < 2 else '(' + latex(cp) + ')'
            for cp in cp_fac
        ]
        bsd['tamagawa_factors'] = r'\cdot'.join(cp_fac)
        bsd['tamagawa_product'] = sage.misc.all.prod(tamagawa_numbers)

        cond, iso, num = split_lmfdb_label(self.lmfdb_label)
        data['newform'] = web_latex(self.E.q_eigenform(10))
        self.newform_label = newform_label(cond, 2, 1, iso)
        self.newform_link = url_for("emf.render_elliptic_modular_forms",
                                    level=cond,
                                    weight=2,
                                    character=1,
                                    label=iso)
        newform_exists_in_db = is_newform_in_db(self.newform_label)
        self._code = None

        self.friends = [('Isogeny class ' + self.lmfdb_iso,
                         url_for(".by_double_iso_label",
                                 conductor=N,
                                 iso_label=iso)),
                        ('Minimal quadratic twist %s %s' %
                         (data['minq_info'], data['minq_label']),
                         url_for(".by_triple_label",
                                 conductor=minq_N,
                                 iso_label=minq_iso,
                                 number=minq_number)),
                        ('All twists ',
                         url_for(".rational_elliptic_curves", jinv=self.jinv)),
                        ('L-function',
                         url_for("l_functions.l_function_ec_page",
                                 label=self.lmfdb_label))]
        if not self.cm:
            if N <= 300:
                self.friends += [('Symmetric square L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='2',
                                          label=self.lmfdb_iso))]
            if N <= 50:
                self.friends += [('Symmetric cube L-function',
                                  url_for("l_functions.l_function_ec_sym_page",
                                          power='3',
                                          label=self.lmfdb_iso))]
        if newform_exists_in_db:
            self.friends += [('Modular form ' + self.newform_label,
                              self.newform_link)]

        self.downloads = [('Download coefficients of q-expansion',
                           url_for(".download_EC_qexp",
                                   label=self.lmfdb_label,
                                   limit=100)),
                          ('Download all stored data',
                           url_for(".download_EC_all",
                                   label=self.lmfdb_label)),
                          ('Download Magma code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='magma')),
                          ('Download Sage code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='sage')),
                          ('Download GP code',
                           url_for(".ec_code_download",
                                   conductor=cond,
                                   iso=iso,
                                   number=num,
                                   label=self.lmfdb_label,
                                   download_type='gp'))]

        self.plot = encode_plot(self.E.plot())
        self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot
        self.properties = [('Label', self.lmfdb_label), (None, self.plot_link),
                           ('Conductor', '\(%s\)' % data['conductor']),
                           ('Discriminant', '\(%s\)' % data['disc']),
                           ('j-invariant', '%s' % data['j_inv_latex']),
                           ('CM', '%s' % data['CM']),
                           ('Rank', '\(%s\)' % mw['rank']),
                           ('Torsion Structure', '\(%s\)' % mw['tor_struct'])]

        self.title = "Elliptic Curve %s (Cremona label %s)" % (
            self.lmfdb_label, self.label)

        self.bread = [('Elliptic Curves', url_for("ecnf.index")),
                      ('$\Q$', url_for(".rational_elliptic_curves")),
                      ('%s' % N, url_for(".by_conductor", conductor=N)),
                      ('%s' % iso,
                       url_for(".by_double_iso_label",
                               conductor=N,
                               iso_label=iso)), ('%s' % num, ' ')]
Beispiel #16
0
    def make_curve(self):
        # To start with the data fields of self are just those from
        # the database.  We need to reformat these, construct the
        # actual elliptic curve E, and compute some further (easy)
        # data about it.
        #

        # Weierstrass equation

        data = self.data = {}
        data['ainvs'] = [int(ai) for ai in self.ainvs]
        self.E = EllipticCurve(data['ainvs'])
        data['equation'] = web_latex(self.E)

        # conductor, j-invariant and discriminant

        data['conductor'] = N = ZZ(self.conductor)
        bad_primes = N.prime_factors()
        try:
            data['j_invariant'] = QQ(str(self.jinv))
        except KeyError:
            data['j_invariant'] = self.E.j_invariant()
        data['j_inv_factor'] = latex(0)
        if data['j_invariant']:
            data['j_inv_factor'] = latex(data['j_invariant'].factor())
        data['j_inv_str'] = unicode(str(data['j_invariant']))
        data['j_inv_latex'] = web_latex(data['j_invariant'])
        data['disc'] = D = self.E.discriminant()
        data['disc_latex'] = web_latex(data['disc'])
        data['disc_factor'] = latex(data['disc'].factor())
        data['cond_factor'] =latex(N.factor())
        data['cond_latex'] = web_latex(N)

        # CM and endomorphism ring

        data['CMD'] = self.cm
        data['CM'] = "no"
        data['EndE'] = "\(\Z\)"
        if self.cm:
            data['CM'] = "yes (\(D=%s\))" % data['CMD']
            if data['CMD']%4==0:
                d4 = ZZ(data['CMD'])//4
                data['EndE'] = "\(\Z[\sqrt{%s}]\)" % d4
            else:
                data['EndE'] = "\(\Z[(1+\sqrt{%s})/2]\)" % data['CMD']
            data['ST'] = '<a href="%s">$%s$</a>' % (url_for('st.by_label', label='1.2.N(U(1))'),'N(\\mathrm{U}(1))')
        else:
            data['ST'] = '<a href="%s">$%s$</a>' % (url_for('st.by_label', label='1.2.SU(2)'),'\\mathrm{SU}(2)')

        # modular degree

        try:
            data['degree'] = self.degree
        except AttributeError:
            try:
                data['degree'] = self.E.modular_degree()
            except RuntimeError:
                data['degree']  # invalid, but will be displayed nicely

        # Minimal quadratic twist

        E_pari = self.E.pari_curve()
        from sage.libs.pari.all import PariError
        try:
            minq, minqD = self.E.minimal_quadratic_twist()
        except PariError:  # this does occur with 164411a1
            ec.debug("PariError computing minimal quadratic twist of elliptic curve %s" % lmfdb_label)
            minq = self.E
            minqD = 1
        data['minq_D'] = minqD
        if self.E == minq:
            data['minq_label'] = self.lmfdb_label
            data['minq_info'] = '(itself)'
        else:
            minq_ainvs = [str(c) for c in minq.ainvs()]
            data['minq_label'] = db_ec().find_one({'ainvs': minq_ainvs})['lmfdb_label']
            data['minq_info'] = '(by %s)' % minqD

        minq_N, minq_iso, minq_number = split_lmfdb_label(data['minq_label'])

        # rational and integral points

        mw = self.mw = {}

        xintpoints_projective = [self.E.lift_x(x) for x in self.xintcoords]
        xintpoints = [P.xy() for P in xintpoints_projective]
        mw['int_points'] = ', '.join(web_latex(P) for P in xintpoints)

        # Generators of infinite order

        mw['rank'] = self.rank
        try:
            self.generators = [self.E(g) for g in parse_points(self.gens)]
            mw['generators'] = [web_latex(P.xy()) for P in self.generators]
            mw['heights'] = [P.height() for P in self.generators]
        except AttributeError:
            mw['generators'] = ''
            mw['heights'] = []

        # Torsion subgroup: order, structure, generators

        mw['tor_order'] = self.torsion
        tor_struct = [int(c) for c in self.torsion_structure]
        if mw['tor_order'] == 1:
            mw['tor_struct'] = '\mathrm{Trivial}'
            mw['tor_gens'] = ''
        else:
            mw['tor_struct'] = ' \\times '.join(['\Z/{%s}\Z' % n
                                                 for n in tor_struct])
            mw['tor_gens'] = ', '.join(web_latex(self.E(g).xy()) for g in parse_points(self.torsion_generators))

        # Images of Galois representations

        try:
            data['galois_images'] = [trim_galois_image_code(s) for s in self.galois_images]
            data['non_surjective_primes'] = self.non_surjective_primes
        except AttributeError:
            #print "No Galois image data"
            data['galois_images'] = []
            data['non_surjective_primes'] = []

        data['galois_data'] = [{'p': p,'image': im }
                               for p,im in zip(data['non_surjective_primes'],
                                               data['galois_images'])]

        if self.twoadic_gens:
            from sage.matrix.all import Matrix
            data['twoadic_gen_matrices'] = ','.join([latex(Matrix(2,2,M)) for M in self.twoadic_gens])
            data['twoadic_rouse_url'] = ROUSE_URL_PREFIX + self.twoadic_label + ".html"
        # Leading term of L-function & BSD data

        bsd = self.bsd = {}

        r = self.rank
        if r >= 2:
            bsd['lder_name'] = "L^{(%s)}(E,1)/%s!" % (r,r)
        elif r:
            bsd['lder_name'] = "L'(E,1)"
        else:
            bsd['lder_name'] = "L(E,1)"

        bsd['reg'] = self.regulator
        bsd['omega'] = self.real_period
        bsd['sha'] = int(0.1+self.sha_an)
        bsd['lder'] = self.special_value

        # Optimality (the optimal curve in the class is the curve
        # whose Cremona label ends in '1' except for '990h' which was
        # labelled wrongly long ago)

        if self.iso == '990h':
            data['Gamma0optimal'] = bool(self.number == 3)
        else:
            data['Gamma0optimal'] = bool(self.number == 1)


        data['p_adic_data_exists'] = False
        if data['Gamma0optimal']:
            data['p_adic_data_exists'] = (padic_db().find({'lmfdb_iso': self.lmfdb_iso}).count()) > 0
        data['p_adic_primes'] = [p for p in sage.all.prime_range(5, 100)
                                 if self.E.is_ordinary(p) and not p.divides(N)]

        # Local data

        local_data = self.local_data = []
        # if we use E.tamagawa_numbers() it calls E.local_data(p) which
        # used to crash on some curves e.g. 164411a1
        tamagawa_numbers = []
        for p in bad_primes:
            local_info = self.E.local_data(p, algorithm="generic")
            local_data_p = {}
            local_data_p['p'] = p
            local_data_p['tamagawa_number'] = local_info.tamagawa_number()
            tamagawa_numbers.append(ZZ(local_info.tamagawa_number()))
            local_data_p['kodaira_symbol'] = web_latex(local_info.kodaira_symbol()).replace('$', '')
            local_data_p['reduction_type'] = local_info.bad_reduction_type()
            local_data_p['ord_cond'] = local_info.conductor_valuation()
            local_data_p['ord_disc'] = local_info.discriminant_valuation()
            local_data_p['ord_den_j'] = max(0,-self.E.j_invariant().valuation(p))
            local_data.append(local_data_p)

        cp_fac = [cp.factor() for cp in tamagawa_numbers]
        cp_fac = [latex(cp) if len(cp)<2 else '('+latex(cp)+')' for cp in cp_fac]
        bsd['tamagawa_factors'] = r'\cdot'.join(cp_fac)
        bsd['tamagawa_product'] = sage.misc.all.prod(tamagawa_numbers)

        cond, iso, num = split_lmfdb_label(self.lmfdb_label)
        data['newform'] =  web_latex(self.E.q_eigenform(10))
        self.newform_label = newform_label(cond,2,1,iso)
        self.newform_link = url_for("emf.render_elliptic_modular_forms", level=cond, weight=2, character=1, label=iso)
        newform_exists_in_db = is_newform_in_db(self.newform_label)
        self._code = None

        self.friends = [
            ('Isogeny class ' + self.lmfdb_iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)),
            ('Minimal quadratic twist %s %s' % (data['minq_info'], data['minq_label']), url_for(".by_triple_label", conductor=minq_N, iso_label=minq_iso, number=minq_number)),
            ('All twists ', url_for(".rational_elliptic_curves", jinv=self.jinv)),
            ('L-function', url_for("l_functions.l_function_ec_page", label=self.lmfdb_label))]
        if not self.cm:
            if N<=300:
                self.friends += [('Symmetric square L-function', url_for("l_functions.l_function_ec_sym_page", power='2', label=self.lmfdb_iso))]
            if N<=50:
                self.friends += [('Symmetric cube L-function', url_for("l_functions.l_function_ec_sym_page", power='3', label=self.lmfdb_iso))]
        if newform_exists_in_db:
            self.friends += [('Modular form ' + self.newform_label, self.newform_link)]

        self.downloads = [('Download coefficients of q-expansion', url_for(".download_EC_qexp", label=self.lmfdb_label, limit=100)),
                          ('Download all stored data', url_for(".download_EC_all", label=self.lmfdb_label)),
                          ('Download Magma code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='magma')),
                          ('Download Sage code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='sage')),
                          ('Download GP code', url_for(".ec_code_download", conductor=cond, iso=iso, number=num, label=self.lmfdb_label, download_type='gp'))
        ]

        self.plot = encode_plot(self.E.plot())
        self.plot_link = '<img src="%s" width="200" height="150"/>' % self.plot
        self.properties = [('Label', self.lmfdb_label),
                           (None, self.plot_link),
                           ('Conductor', '\(%s\)' % data['conductor']),
                           ('Discriminant', '\(%s\)' % data['disc']),
                           ('j-invariant', '%s' % data['j_inv_latex']),
                           ('CM', '%s' % data['CM']),
                           ('Rank', '\(%s\)' % mw['rank']),
                           ('Torsion Structure', '\(%s\)' % mw['tor_struct'])
                           ]

        self.title = "Elliptic Curve %s (Cremona label %s)" % (self.lmfdb_label, self.label)

        self.bread = [('Elliptic Curves', url_for("ecnf.index")),
                           ('$\Q$', url_for(".rational_elliptic_curves")),
                           ('%s' % N, url_for(".by_conductor", conductor=N)),
                           ('%s' % iso, url_for(".by_double_iso_label", conductor=N, iso_label=iso)),
                           ('%s' % num,' ')]