def SPErough(data, n_channel_s):
    fit_input, bins, check = SPE_input(data)
    amplitude  = get_amp(data)
    gauss = GaussianModel(prefix='g_')
    s, bins = np.histogram(amplitude,  bins=bins)
    topnoise  = fit_input[0]
    valley    = fit_input[1]
    endvalley = fit_input[2]
    spebump   = fit_input[3]
    endbin    = fit_input[4]
    idx_1 = endvalley
    idx_2 = spebump + (spebump-endvalley)
    if idx_1 < endvalley:
        idx_1 = endvalley
    if idx_2 > endbin:
        idx_2 = endbin 
    if check == 1:      
        gauss.set_param_hint('g_height', value=s[spebump], min=s[spebump]-30, max=s[spebump]+30)
        gauss.set_param_hint('g_center', value=bins[spebump], min=bins[spebump]-30, max=bins[spebump]+30)
        gauss.set_param_hint('g_sigma', value=idx_2-idx_1, max=(idx_2-idx_1)+30)
        
        result = gauss.fit(s[idx_1:idx_2], x=bins[idx_1:idx_2], weights=1.0/np.sqrt(s[idx_1:idx_2]))
    else:
        gauss  = 0
        result = 0

    return gauss, result
Beispiel #2
0
    def gaussian_fit_2(self,
                       y_data,
                       x_data=None,
                       x_peak_indexes=None,
                       y_peak_values=None):

        if x_data is None:
            x_data = np.arange(np.max(y_data))
        else:
            pass
        if x_peak_indexes is None:
            x_peak_indexes = np.array(np.where(y_data == np.max(y_data)))
        else:
            pass
        if y_peak_values is None:
            y_peak_values = np.array([np.max(y_data)])
        else:
            pass

        global multi_gauss_a
        for peak_num in range(len(x_peak_indexes)):
            if peak_num == 0:
                multi_gauss_a = GaussianModel(prefix='g' + str(peak_num) + '_')
            else:
                multi_gauss_a += GaussianModel(prefix='g' + str(peak_num) +
                                               '_')

            multi_gauss_a.set_param_hint('g' + str(peak_num) + '_center',
                                         value=x_peak_indexes[peak_num],
                                         min=x_peak_indexes[peak_num] - 200,
                                         max=x_peak_indexes[peak_num] + 200)

            multi_gauss_a.set_param_hint('g' + str(peak_num) + '_sigma',
                                         value=50)

            multi_gauss_a.set_param_hint('g' + str(peak_num) + '_amplitude',
                                         value=50.0 * np.sqrt(2 * np.pi) *
                                         y_peak_values[peak_num])

            # FIT ACTUALLY OUTPUTS AREA INSTEAD OF AMPLITUDE

        multi_gauss_fit_a = multi_gauss_a.fit(
            y_data, x=x_data)  # THIS IS THE LINE ACTUALLY DOING THE FITTING

        return multi_gauss_fit_a
Beispiel #3
0
	def fit_to_gaussian(self, x, y):
		gmodel = GaussianModel()
		params = gmodel.guess(y, x=x)
		c = params['center'].value
		n = len(y)
		q3 = ((np.max(x) - c) / 2) + c
		min_x = np.min(x)
		q1 = ((params['center'].value - min_x) / 2) + min_x
		s = params['sigma'].value
		h = params['height'].value
		max_y = np.max(y)
		if np.max([h, max_y]) < 0.5:
			amp = 1 / n
			diff_h = 0.6 - h
			gmodel.set_param_hint('amplitude', value=amp)
			gmodel.set_param_hint('amplitude', max=amp * (1 + diff_h))
			gmodel.set_param_hint('amplitude', min=amp * diff_h)
		gmodel.set_param_hint('center', value=c)
		gmodel.set_param_hint('center', max=q3)
		gmodel.set_param_hint('center', min=q1)
		gmodel.set_param_hint('sigma', value=s)
		gmodel.set_param_hint('sigma', min=s / 2)
		gmodel.set_param_hint('sigma', max=s * 1.5)
		gmodel.set_param_hint('height', min=0.6)
		result = gmodel.fit(y, x=x)
		# gmodel.print_param_hints()
		report = result.fit_report()
		chi_re = re.compile(r'chi-square\s+=\s+([0-9.]+)')
		cor_re = re.compile(r'C\(sigma, amplitude\)\s+=\s+([0-9.-]+)')
		chis = np.float32(chi_re.findall(report))
		cors = np.float32(cor_re.findall(report))
		coeffs = np.concatenate((chis, cors))
		mse_model = self.assess_fit(y, result.init_fit - result.best_fit)
		mse_yhat = self.assess_fit(y, result.residual)
		return mse_model, mse_yhat, result, report, coeffs