Beispiel #1
0
 def __init__(self, M, b, Ds=[], hypers=[]):
     M = lo.aslinearoperator(M)
     Ds = [lo.aslinearoperator(D) for D in Ds]
     self.M = M
     self.b = b
     self.Ds = Ds
     self.hypers = hypers
Beispiel #2
0
 def __init__(self, M, b, Ds=[], hypers=[]):
     M = lo.aslinearoperator(M)
     Ds = [lo.aslinearoperator(D) for D in Ds]
     self.M = M
     self.b = b
     self.Ds = Ds
     self.hypers = hypers
Beispiel #3
0
def rls(A, b, Ds=[], hypers=[], optimizer=spl.cgs, **kargs):
    """Regularized Least Square
    
    Inputs:
    -------
    M : model matrix, (needs matvec and rmatvec methods)
    Dx : priors, (need matvec and rmatvec methods)
    b : input vector
    hypers: hyperparameters (scalars)
    **kargs : parameters of of the least square optimizer

    Outputs:
    --------
    x : solution
    conv : convergence status

    """
    verbose = getattr(kargs, 'verbose', True)
    callback = getattr(kargs, 'callback', None)
    # normalize hyperparameters
    if callback is None:
        kargs['callback'] = CallbackFactory(verbose=verbose)
    A = lo.aslinearoperator(A)
    X = A.T * A
    for h, D in zip(hypers, Ds):
        D = lo.aslinearoperator(D)
        X += h * D.T * D
    out, info = optimizer(X, A.T * b, **kargs)
    return out
Beispiel #4
0
def rls(A, b, Ds=[], hypers=[], optimizer=spl.cgs, **kargs):
    """Regularized Least Square
    
    Inputs:
    -------
    M : model matrix, (needs matvec and rmatvec methods)
    Dx : priors, (need matvec and rmatvec methods)
    b : input vector
    hypers: hyperparameters (scalars)
    **kargs : parameters of of the least square optimizer

    Outputs:
    --------
    x : solution
    conv : convergence status

    """
    verbose = getattr(kargs, 'verbose', True)
    callback = getattr(kargs, 'callback', None)
    if callback is None:
        kargs['callback'] = CallbackFactory(verbose=verbose)
    A = lo.aslinearoperator(A)
    X = A.T * A
    for h, D in zip(hypers, Ds):
        D = lo.aslinearoperator(D)
        X += h * D.T * D
    out, info = optimizer(X, A.T * b, **kargs)
    return out
Beispiel #5
0
 def __init__(self, M, b, Ds=[], hypers=[], norms=[], dnorms=[], **kargs):
     M = lo.aslinearoperator(M)
     Ds = [lo.aslinearoperator(D) for D in Ds]
     self.M = M
     self.b = b
     self.Ds = Ds
     self.hypers = hypers
     self.norms = norms
     self.dnorms = dnorms
Beispiel #6
0
 def __init__(self, M, b, Ds=[], hypers=[], norms=[], dnorms=[], **kargs):
     M = lo.aslinearoperator(M)
     Ds = [lo.aslinearoperator(D) for D in Ds]
     self.M = M
     self.b = b
     self.Ds = Ds
     self.hypers = hypers
     self.norms = norms
     self.dnorms = dnorms
Beispiel #7
0
def rirls(M, y, Ds=[], tol1=1e-5, maxiter1=10, p=1, optimizer=spl.cgs, **kargs):
    """ Regularized Iteratively Reweighted Least Square
        
    """
    M = lo.aslinearoperator(M)
    Ds = [lo.aslinearoperator(D) for D in Ds]
    x0 = M.T * y
    x = copy(x0)
    r = M * x - y
    tol1 /= np.sum(np.abs(r) ** p)
    for i in xrange(maxiter1):
        print("\n outer loop " + str(i + 1) + "\n")
        A = M.T * M
        for D in Ds:
            rd = D * x
            w = np.abs(rd) ** (p - 2)
            w[np.where(1 - np.isfinite(w))] = 0 # inf
            A += D.T * lo.diag(w) * D
        x, t = optimizer(A, x0, **kargs)
        if np.sum(np.abs(y - M * x) ** p) < tol1:
            break
        r = M * x - y
    return x
Beispiel #8
0
def rirls(M, y, Ds=[], tol1=1e-5, maxiter1=10, p=1, optimizer=spl.cgs, **kargs):
    """ Regularized Iteratively Reweighted Least Square
        
    """
    M = lo.aslinearoperator(M)
    Ds = [lo.aslinearoperator(D) for D in Ds]
    x0 = M.T * y
    x = copy(x0)
    r = M * x - y
    tol1 /= np.sum(np.abs(r) ** p)
    for i in xrange(maxiter1):
        print("\n outer loop " + str(i + 1) + "\n")
        A = M.T * M
        for D in Ds:
            rd = D * x
            w = np.abs(rd) ** (p - 2)
            w[np.where(1 - np.isfinite(w))] = 0 # inf
            A += D.T * lo.diag(w) * D
        x, t = optimizer(A, x0, **kargs)
        if np.sum(np.abs(y - M * x) ** p) < tol1:
            break
        r = M * x - y
    return x
Beispiel #9
0
def irls(A0, x0, tol1=1e-5, maxiter1=10, p=1, optimizer=spl.cgs, **kargs):
    """ Iteratively Reweighted Least Square
        
    """
    A0 = lo.aslinearoperator(A0)
    out = A0.T * x0
    tol1 /= np.sum(np.abs(x0 - A0 * out) ** p)
    for i in xrange(maxiter1):
        print("\n outer loop " + str(i + 1) + "\n")
        w = np.abs(x0 - A0 * out) ** (p - 2)
        A = A0.T * lo.diag(w) * A0
        x = A0.T * (w * x0)
        out, t = optimizer(A, x, **kargs)
        if np.sum(np.abs(x0 - A0 * out) ** p) < tol1:
            break
    return out
Beispiel #10
0
def irls(A0, x0, tol1=1e-5, maxiter1=10, p=1, optimizer=spl.cgs, **kargs):
    """ Iteratively Reweighted Least Square
        
    """
    A0 = lo.aslinearoperator(A0)
    out = A0.T * x0
    tol1 /= np.sum(np.abs(x0 - A0 * out) ** p)
    for i in xrange(maxiter1):
        print("\n outer loop " + str(i + 1) + "\n")
        w = np.abs(x0 - A0 * out) ** (p - 2)
        A = A0.T * lo.diag(w) * A0
        x = A0.T * (w * x0)
        out, t = optimizer(A, x, **kargs)
        if np.sum(np.abs(x0 - A0 * out) ** p) < tol1:
            break
    return out
Beispiel #11
0
def gacg(M,
         y,
         Ds=[],
         hypers=[],
         norms=[],
         dnorms=[],
         tol=1e-6,
         x0=None,
         maxiter=None,
         callback=None,
         **kwargs):
    """Generalized approximate conjugate gradient
    
    Approximate conjugate gradient is a gradient method with a polak
    ribiere update.

    It is generalized since it does not assume quadratic norm.

    Inputs:
    -------
    M : model matrix, (needs matvec and rmatvec methods)
    Ds : priors, (need matvec and rmatvec methods)
    norms : norms of the likelihood and the priors
    dnorms : derivation of the norm
    b : input vector
    hypers: hyperparameters (scalars)


    Outputs:
    --------
    x : solution

    """
    if callback is None:
        callback = CallbackFactory(verbose=True, criterion=True)
    # ensure linear operators are passed
    M = lo.aslinearoperator(M)
    Ds = [lo.aslinearoperator(D) for D in Ds]
    # first guess
    if x0 is None:
        x = M.T * y
    else:
        x = copy(x0)
    # normalize hyperparameters
    hypers = normalize_hyper(hypers, y, x)
    # tolerance
    r = M * x - y
    rd = [D * x for D in Ds]
    J = criterion(hypers=hypers, norms=norms, Ds=Ds, r=r, rd=rd)
    Jnorm = copy(J)
    resid = 2 * tol
    # maxiter
    if maxiter is None:
        maxiter = x.size
    iter_ = 0
    # main loop
    while iter_ < maxiter and resid > tol:
        iter_ += 1
        # gradient
        g, ng = gradient(hypers=hypers, dnorms=dnorms, M=M, Ds=Ds, r=r, rd=rd)
        # descent direction
        if (iter_ % 10) == 1:
            d = -g
        else:
            b = ng / ng0
            d = -g + b * d
        g0 = copy(g)
        ng0 = copy(ng)
        # step
        if norms[0] == norm2:
            a = quadratic_optimal_step(d, g, M, hypers, Ds)
        else:
            a = backtracking_line_search(d,
                                         g,
                                         M,
                                         hypers,
                                         Ds,
                                         x,
                                         norms=norms,
                                         y=y,
                                         f0=J)
        # update
        x += a * d
        # residual
        r = M * x - y
        rd = [D * x for D in Ds]
        # criterion
        J_old = copy(J)
        J = criterion(hypers=hypers, norms=norms, Ds=Ds, r=r, rd=rd)
        #resid = J / Jnorm
        resid = (J_old - J) / Jnorm
        callback(x)
    # define output
    if resid > tol:
        info = resid
    else:
        info = 0
    return x  #, info
Beispiel #12
0
# deglitch
uctod = uncompress(ctod, C, factor)
uctod.mask = tod.mask
uctod = tm.filter_median(uctod, length=deglitch_filter_length)
uctod_mask = tm.deglitch_l2mad(uctod, projection)
uctod = uncompress(ctod, C, factor)
uctod.mask = uctod_mask
uctod = tm.interpolate_linear(uctod)
ctod = compress(uctod, C, factor)
# filtering
ctod = tm.filter_median(ctod, length=filter_length / factor)
cov = noise_covariance(ctod, obs)
S = cov.aslinearoperator()

# model with compression
M = lo.aslinearoperator(model.aslinearoperator())
M = C * M
# noise covariance
cov = noise_covariance(ctod, obs)
S = lo.aslinearoperator(cov.aslinearoperator())
#S = C * S * C.T
#S = None
# backprojection
backmap = (M.T * ctod.flatten()).reshape(projection.shapein)
# priors
Ds = [lo.diff(backmap.shape, axis=0, dtype=np.float64),]
Ds.append(lo.diff(backmap.shape, axis=1, dtype=np.float64))
# weights
weights = projection.transpose(tod.ones(tod.shape))
# masking the map
MM = lo.mask(weights == 0)
Beispiel #13
0
def gacg(M, y, Ds=[], hypers=[], norms=[], dnorms=[], tol=1e-6, x0=None, maxiter=None,
         callback=None, **kwargs):
    """Generalized approximate conjugate gradient
    
    Approximate conjugate gradient is a gradient method with a polak
    ribiere update.

    It is generalized since it does not assume quadratic norm.

    Inputs:
    -------
    M : model matrix, (needs matvec and rmatvec methods)
    Ds : priors, (need matvec and rmatvec methods)
    norms : norms of the likelihood and the priors
    dnorms : derivation of the norm
    b : input vector
    hypers: hyperparameters (scalars)


    Outputs:
    --------
    x : solution

    """
    if callback is None:
        callback = CallbackFactory(verbose=True)
    # ensure linear operators are passed
    M = lo.aslinearoperator(M)
    Ds = [lo.aslinearoperator(D) for D in Ds]
    # first guess
    if x0 is None:
        x = M.T * y
    else:
        x = copy(x0)
    # tolerance
    r = M * x - y
    rd = [D * x for D in Ds]
    J = criterion(hypers=hypers, norms=norms, Ds=Ds, r=r, rd=rd)
    Jnorm = copy(J)
    resid = 2 * tol
    # maxiter
    if maxiter is None:
        maxiter = x.size
    iter_ = 0
    # main loop
    while iter_ < maxiter and resid > tol:
        iter_ += 1
        # gradient
        g, ng = gradient(hypers=hypers, dnorms=dnorms, M=M, Ds=Ds, r=r, rd=rd)
        # descent direction
        if (iter_  % 10) == 1:
            d = - g
        else:
            b = ng / ng0
            d = - g + b * d
        g0 = copy(g)
        ng0 = copy(ng)
        # step
        if norms[0] == norm2:
            a = quadratic_optimal_step(d, g, M, hypers, Ds)
        else:
            a = backtracking_line_search(d, g, M, hypers, Ds,
                                         x, norms, f0=J)
        # update
        x += a * d
        # residual
        r = M * x - y
        rd = [D * x for D in Ds]
        # criterion
        J = criterion(hypers=hypers, norms=norms, Ds=Ds, r=r, rd=rd)
        resid = J / Jnorm
        callback(x)
    # define output
    if resid > tol:
        info = resid
    else:
        info = 0
    return x#, info
Beispiel #14
0
                         detector_policy='remove')
tod = obs.get_tod()
header = obs.get_map_header()
header.update('CDELT1', resolution / 3600)
header.update('CDELT2', resolution / 3600)
npix = 5
good_npix = False
projection = tm.Projection(obs, header=header,
                           resolution=resolution,
                           oversampling=False,
                           npixels_per_sample=npix)
model = projection
#C = csh.averaging(tod.shape, factor=factor)
compression_shape = [tod.size / factor, tod.size, ]
C = tm.CompressionAverage(compression_factor=factor).aslinearoperator(compression_shape)
C = lo.aslinearoperator(C)
# compress data
ctod = compress(tod, C, factor)
# uncompress for preprocessing
uctod = uncompress(ctod, C, factor)
# XXX need mask ...
uctod.mask = tod.mask
# deglitching
uctod = tm.filter_median(uctod, length=10)
uctod.mask = tm.deglitch_l2mad(uctod, projection)
masking = tm.Masking(uctod.mask)
model = masking * projection
# filtering
ctod = tm.filter_median(ctod, length=filter_length / factor)
cov = noise_covariance(ctod, obs)
S = cov.aslinearoperator()
Beispiel #15
0
    "scan_angle":0.,
    "scan_nlegs":1,
    "scan_length":4.,
    "compression_factor":1,
    "scan_speed":60.0
    }
pointing = tm.pacs_create_scan(ra0, dec0, **pointing_params)
# create obs object
obs = tm.PacsSimulation(pointing, "red", policy_bad_detector="keep")
# to define my compression matrix I need only 8 frames
# so I mask the others :
obs.pointing.removed[:] = True
obs.pointing.removed[201:209] = False
# create projector
projection = tm.Projection(obs)
P = lo.aslinearoperator(projection)

# define masking of coefficients
# ------------------------------
# number of coefficients to keep
factor = 8.
nk = P.shape[0] / factor
# coverage map
w = P.T * np.ones(P.shape[0])
# sort coverage map coefficients
ws = np.sort(w)
# find the nk largest coverage elements
threshold = ws[-nk]
mask = w < threshold
# define decimation Linear Operator according to coverage map coef
# selection.
Beispiel #16
0
tod = pacs.get_tod()
# projector
projection = tm.Projection(pacs, resolution=3.2, 
                           oversampling=True, npixels_per_sample=6)
masking = tm.Masking(tod.mask)
compression = tm.CompressionAverage(pacs.compression_factor)
model = masking * compression * projection
# naive map
naive = model.transpose(tod)
# coverage map
coverage = model.transpose(tod.ones(tod.shape))
# noise covariance
length = 2**np.ceil(np.log2(np.array(tod.nsamples) + 200))
invNtt = tm.InvNtt(length, pacs.get_filter_uncorrelated())
fft = tm.Fft(length)
padding = tm.Padding(left=invNtt.ncorrelations, 
                     right=length - tod.nsamples - invNtt.ncorrelations)
weight = padding.T * fft.T * invNtt * fft * padding
W = lo.aslinearoperator(weight.aslinearoperator())
# transform to lo
P = lo.aslinearoperator(model.aslinearoperator())
# priors
Ds = [lo.diff(naive.shape, axis=axis) for axis in xrange(naive.ndim)]
# inversion
hypers = [1e6, 1e6, ]
y = tod.flatten()
M = P.T * W * P + np.sum([h * D.T * D for h, D in zip(hypers, Ds)])
x, conv = spl.cgs(M, P.T * W * y, callback=lo.CallbackFactory(verbose=True))
sol = naive.zeros(naive.shape)
sol[:] = x.reshape(sol.shape)
Beispiel #17
0
#uctod[:] = (C.T * ctod.flatten()).reshape(tod.shape)

# deglitching
projection = tm.Projection(pacs,
                           header=header,
                           resolution=3.,
                           npixels_per_sample=6)
uctod.mask = tm.deglitch_l2mad(uctod, projection)
#ctod = compression.direct(uctod)
# model
masking = tm.Masking(uctod.mask)
model = masking * projection
# remove drift
#ctod = tm.filter_median(ctod, length=3000 / 8.)
# first map
M = C * lo.aslinearoperator(model.aslinearoperator())
#P = lo.aslinearoperator(projection.aslinearoperator())
#C = csh.averaging(tod.shape, factor=8)
#I = lo.mask(uctod.mask)
#M = C * I.T * I * P
#M = C * P
backmap = (M.T * ctod.flatten()).reshape(projection.shapein)
#weights = (M.T * np.ones(ctod.size)).reshape(projection.shapein)
weights = projection.transpose(tod.ones(tod.shape))
MM = lo.mask(weights == 0)
M = M * MM.T
# define algo
# priors
Dx = lo.diff(backmap.shape, axis=0, dtype=np.float64) * MM.T
Dy = lo.diff(backmap.shape, axis=1, dtype=np.float64) * MM.T
#Dw = lo.pywt_lo.wavedec2(backmap.shape, "haar", level=3)
Beispiel #18
0
naive = backmap / coverage
# mask according to coverage (everything that is covered by less than 10.)
mask = Masking(coverage < 10.)
# The model is the masking of the sky map then the projection
# This is basically matrix multiplication
model = projection * mask

# Performing inversion
# ---------------------

#  with TAMASIS
x_tm = mapper_rls(tod, model, hyper=1e-1, tol=1e-10, maxiter=100)

#  with lo routines
# transform to lo
H = lo.aslinearoperator(model * mask)
# smoothness priors
Ds = [lo.diff(backmap.shape, axis=axis) for axis in (0, 1)]
# inversion
y = tod.ravel()  # requires 1d input
x_lo = lo.acg(H, y, Ds, 1e-1 * np.ones(3), tol=1e-10, maxiter=100)
x_lo.resize(backmap.shape)  # output is 1d so need reshaping

# with sparsity assumptions (using Huber algorithm)
x_h = lo.hacg(H,
              y,
              Ds,
              1e1 * np.ones(3),
              np.asarray((None, 1e-6, 1e-6, 1e-6)),
              x0=x_lo.flatten(),
              tol=1e-7,
Beispiel #19
0
header = pacs.get_map_header()
#header['NAXIS1'] = 192
#header['NAXIS2'] = 192
#header['CRPIX1'] = 96
#header['CRPIX2'] = 96
header.update('CDELT1', resolution / 3600)
header.update('CDELT2', resolution / 3600)
# data
tod = pacs.get_tod()
y = tod.flatten()
# remove bad pixels (by updating mask !)
#tod = remove_bad_pixels(tod)
# compress data
factor = 8
compression = tm.CompressionAverage(factor)
C = lo.aslinearoperator(compression.aslinearoperator(shape=(tod.size / factor, tod.size)))
ctod = compression.direct(tod)
# uncompress for deglitching
uctod = tod.copy(tod.shape)
y0, t = lo.spl.cgs(C.T * C, C.T * ctod.flatten())
uctod[:] = y0.reshape(tod.shape)
# deglitching
projection = tm.Projection(pacs, header=header, resolution=3., npixels_per_sample=5)
uctod.mask = tm.deglitch_l2mad(uctod, projection)
ctod = compression.direct(uctod)
# model
masking = tm.Masking(uctod.mask)
model = compression * masking * projection
# remove drift
#ctod = tm.filter_median(ctod, length=3000 / 8.)
# first map
Beispiel #20
0
coverage = projection.T(np.ones(tod.shape))
# naive map
naive = backmap / coverage
# mask according to coverage (everything that is covered by less than 10.)
mask = Masking(coverage < 10.)
# The model is the masking of the sky map then the projection
# This is basically matrix multiplication
model = projection * mask

# Performing inversion
# ---------------------

#  with TAMASIS
x_tm = mapper_rls(tod, model, hyper=1e-1, tol=1e-10, maxiter=100)

#  with lo routines
# transform to lo
H = lo.aslinearoperator(model * mask)
# smoothness priors
Ds = [lo.diff(backmap.shape, axis=axis) for axis in (0, 1)]
# inversion
y = tod.ravel() # requires 1d input
x_lo = lo.acg(H, y, Ds, 1e-1 * np.ones(3), tol=1e-10, maxiter=100)
x_lo.resize(backmap.shape) # output is 1d so need reshaping

# with sparsity assumptions (using Huber algorithm)
x_h = lo.hacg(H, y, Ds, 1e1 * np.ones(3),
            np.asarray((None, 1e-6, 1e-6, 1e-6)),
            x0=x_lo.flatten(), tol=1e-7, maxiter=200)
x_h.resize(backmap.shape)
Beispiel #21
0
header = pacs.get_map_header()
header['NAXIS1'] = 192
header['NAXIS2'] = 192
header['CRPIX1'] = 96
header['CRPIX2'] = 96
# data
tod = pacs.get_tod()
# remove bad pixels (by updating mask !)
#tod = remove_bad_pixels(tod)
# deglitching
projection = Projection(pacs, header=header, resolution=3., npixels_per_sample=6)
deglitch_l2mad(tod, projection)
# model
masking = Masking(tod.mask)
model = masking * projection
P = lo.aslinearoperator(model.aslinearoperator())
# derive filter
#tod = filter_median(tod, length=9999)
#kernel = filt.kernel_from_tod(tod, length=1000)
kernel =  (1 + (10. / np.arange(500)) ** .25)
kernel = np.concatenate((kernel[::-1], kernel))
#kern = np.mean(kernel, axis=0)
N = filt.kernels_convolve(tod.shape, 1 / np.sqrt(kernel))
# apply to data
yn = N * tod.flatten()
# apply to model
M = N * P
# first map
backmap = model.transpose(tod)
# define algo
# priors
Beispiel #22
0
npix = 5
good_npix = False
projection = tm.Projection(obs,
                           header=header,
                           resolution=resolution,
                           oversampling=False,
                           npixels_per_sample=npix)
model = projection
#C = csh.averaging(tod.shape, factor=factor)
compression_shape = [
    tod.size / factor,
    tod.size,
]
C = tm.CompressionAverage(
    compression_factor=factor).aslinearoperator(compression_shape)
C = lo.aslinearoperator(C)
# compress data
ctod = compress(tod, C, factor)
# uncompress for preprocessing
uctod = uncompress(ctod, C, factor)
# XXX need mask ...
uctod.mask = tod.mask
# deglitching
uctod = tm.filter_median(uctod, length=10)
uctod.mask = tm.deglitch_l2mad(uctod, projection)
masking = tm.Masking(uctod.mask)
model = masking * projection
# filtering
ctod = tm.filter_median(ctod, length=filter_length / factor)
cov = noise_covariance(ctod, obs)
S = cov.aslinearoperator()
Beispiel #23
0
    'cam_angle': 0.,
    "scan_angle": 0.,
    "scan_nlegs": 1,
    "scan_length": 400.,
    "scan_speed": 60.0,
    "compression_factor": 1  # we will compress later
}
pointing = tm.pacs_create_scan(ra0, dec0, **pointing_params)
# create obs object
obs = tm.PacsSimulation(pointing, "red", policy_bad_detector="keep")
# we dont need 200 first and last frames
obs.pointing.removed[200:] = True
obs.pointing.removed[-201:] = True
# create projector
projection = tm.Projection(obs, npixels_per_sample=4)
P = lo.aslinearoperator(projection)
# simulate data
x0 = tm.gaussian(projection.shapein, 3)  # map with gaussian source
tod0 = projection(x0)  # data
n = np.random.randn(*tod0.shape)  # noise
nsr = 1e-2
tod = tod0 + nsr * n  # noisy data
y = tod.ravel()  # as 1d array

# load compression matrix
filename = os.path.join(os.getenv("HOME"), "data", "pacs",
                        "mmc_cam_angle_0_scan_angle_0_speed60.fits")
c = fa.FitsArray(file=filename).astype(np.float64)
cmm = csh.compression.AnyOperator(c)
C = cmm((projection.shapeout[0], projection.shapeout[1][0]), )
# compress
Beispiel #24
0
import lo.pywt_lo as pywt_lo

# data
pacs = PacsObservation(filename=tamasis_dir + 'tests/frames_blue.fits',
                       fine_sampling_factor=1,
                       keep_bad_detectors=False)
tod = pacs.get_tod()
# projector
projection = Projection(pacs,
                        resolution=3.2,
                        oversampling=False,
                        npixels_per_sample=6)
model = projection
# naive map
backmap = model.transpose(tod)
# mask
M = lo.mask(backmap < 0).T
#M = lo.identity(2 * (backmap.size,))
# transform to lo
P = lo.aslinearoperator(model.aslinearoperator()) * M
# prior
Dx = lo.diff(backmap.shape, axis=0, dtype=np.float64) * M
Dy = lo.diff(backmap.shape, axis=1, dtype=np.float64) * M
Dw = pywt_lo.wavelet2(backmap.shape, "haar") * M
# inversion
y = tod.flatten()
callback = lo.CallbackFactory(verbose=True)
x = it.rirls(P, (Dx, Dy, Dw), y, p=1.5, maxiter=100, callback=callback)
sol = backmap.zeros(backmap.shape)
sol[:] = (M * x).reshape(sol.shape)
Beispiel #25
0
header = pacs.get_map_header()
#header['NAXIS1'] = 192
#header['NAXIS2'] = 192
#header['CRPIX1'] = 96
#header['CRPIX2'] = 96
header.update('CDELT1', resolution / 3600)
header.update('CDELT2', resolution / 3600)
# data
tod = pacs.get_tod()
y = tod.flatten()
# remove bad pixels (by updating mask !)
#tod = remove_bad_pixels(tod)
# compress data
factor = 8
compression = tm.CompressionAverage(factor)
C = lo.aslinearoperator(
    compression.aslinearoperator(shape=(tod.size / factor, tod.size)))
ctod = compression.direct(tod)
# uncompress for deglitching
uctod = tod.copy(tod.shape)
y0, t = lo.spl.cgs(C.T * C, C.T * ctod.flatten())
uctod[:] = y0.reshape(tod.shape)
# deglitching
projection = tm.Projection(pacs,
                           header=header,
                           resolution=3.,
                           npixels_per_sample=5)
uctod.mask = tm.deglitch_l2mad(uctod, projection)
ctod = compression.direct(uctod)
# model
masking = tm.Masking(uctod.mask)
model = compression * masking * projection