def nofilter(): # response = {'result': []} mythology = request.args.get('mythology') result = {} character = request.args.get("character0") if mythology == 'Indian' or mythology == 'Greek': if character: query = load_data.form_query4(character) print(query) data = load_data.load_data(query, "http://3.101.82.158:3030/SER531") print(data) result = load_data.clean_data(data) # if result: # response = result elif mythology == "Noted Fictional Characters": if character: query = load_data.form_query5(character) data = load_data.load_data(query, "http://dbpedia.org/sparql") result = data elif mythology == "Chinese": if character: query = load_data.form_query4(character) print(query) data = load_data.load_data(query, "http://54.183.203.151:3030/Chinese") result = load_data.clean_data(data) return result
def process(): character = request.args.get('character0') query = load_data.form_query4(character) data = load_data.load_data(query, "http://3.101.82.158:3030/SER531") result = load_data.clean_data(data) print(result) graph.draw_graph(character, result) # return send_from_directory(app.config['CLIENT_IMAGES'],"unix.gv.pdf", as_attachment=True) return send_file('unix.gv.pdf', attachment_filename='something.pdf')
def show_result(): mythology = request.args.get('mythology') data = None if mythology == 'Indian' or mythology == 'Greek': character = request.args.get('character0') filters = [] vars = [] filters.append(request.args.get('filter0')) filters.append(request.args.get('filter1')) vars.append(request.args.get('var1')) vars.append(request.args.get('var2')) vars.append(request.args.get('var3')) query = load_data.form_query2(character, filters, vars) data = load_data.load_data(query, "http://3.101.82.158:3030/SER531") data = load_data.clean_data(data) elif mythology == "Noted Fictional Characters": character1 = request.args.get('character') query = load_data.form_query4(character1) data = load_data.load_data(query, "http://dbpedia.org/sparql") return data
# 结束后生成如下名称feature_dataSet-->'data/train_three_train_feature.csv' ############################################################################### # 合并正负数据集(打标签,负样本抽样,正负样本合并) # ############################################################################### # 通过打标签和正负样本均衡合并,最后形成:'data/one_train_dataSet_final.csv' combine_feature_dataSet.main_combine() one_train_dataSet_final_path = 'data/one_train_dataSet_final.csv' two_train_dataSet_final_path = 'data/two_train_dataSet_final.csv' two_train_dataSet_final_path = 'data/two_train_dataSet_final.csv' # 通过清理不用用户和商品,最后形成:如下特征集: one_train_dataSet_after_clean_path = 'data/one_train_dataSet_after_clean.csv' two_train_dataSet_after_clean_path = 'data/two_train_dataSet_after_clean.csv' three_train_dataSet_after_clean_path = 'data/three_train_dataSet_after_clean.csv' load_data.clean_data(one_train_dataSet_final_path, one_train_dataSet_after_clean_path, '_one') load_data.clean_data(two_train_dataSet_final_path, two_train_dataSet_after_clean_path, '_two') load_data.clean_data(three_train_dataSet_path, three_train_dataSet_after_clean_path, '_three') ############################################################################### # 模型预估 RF # ############################################################################### # 特征筛选后: one_train_dataSet_after_clean_path = 'data/one_train_dataSet_after_clean.csv' two_train_dataSet_after_clean_path = 'data/two_train_dataSet_after_clean.csv' three_train_dataSet_after_clean_path = 'data/three_train_dataSet_after_clean.csv' three_train_dataSet_path
from feature_selection import sort_pop from feature_selection import random_crossover from feature_selection import mutation from feature_selection import half_crossover from feature_selection import remove_duplicates import pandas as pd import random import time import matplotlib.pyplot as plt # Set random seed random.seed(1) time.sleep(1) dataset = read_data() dataset = clean_data(dataset) print("!!!!!!!!!") print(len(dataset.index)) print("Fitness if using all features", fitness_function(dataset)) # Use the standard 13 features as a benchmark to measure against standard_dataset = dataset[[ "age", "sex", "CP", "trestbps", "chol", "FBS", "restecg", "thalach", "exang", "oldpeak", "slope", "ca", "thal", "num" ]] print("Fitness of the standard features typically included", fitness_function(standard_dataset)) population = []