Beispiel #1
0
from sklearn import tree

def sklearn_tree(features, labels):
    clf = tree.DecisionTreeClassifier()
    clf.fit(features, labels)
    return clf

if __name__ == '__main__':
    from load_data import split_train_data,evaliate

    tfs, tls, vfs, vls = split_train_data()
    i = 0
    mean_acc = 0
    for (tfeatures,tlabels,vfeatures,vlabels) in zip(tfs, tls, vfs, vls):
        print('tree : ', i, ' start')
        clf = sklearn_tree(tfeatures, tlabels)
        predict = clf.predict(vfeatures)
        accuracy = evaliate(predict, vlabels)
        mean_acc += accuracy
        i += 1
        print('tree ', i, ' :', accuracy)
    print('mean acc : ', mean_acc / 10)
Beispiel #2
0
    for (features, labels, vfeatures, vlabels) in zip(tfs, tls, vfs, vls):
        print('net : ', i, ' train')
        features = nd.array(features)
        labels = nd.array(np.array(labels))

        vfeatures = nd.array(np.array(vfeatures))
        vlabels = nd.array(np.array(vlabels))
        net = train(features, labels, './params/nn.params')
        net = inter_output(net, 12)
        features = net(features)

        clf = sklearn_tree(features.asnumpy(), labels.asnumpy())
        vfeatures = net(vfeatures)
        predict = clf.predict(vfeatures.asnumpy())
        print(net)
        accuracy = evaliate(predict, vlabels.asnumpy())
        print('accracy :', accuracy)
        # predict = net(vfeatures)
        # predict = predict_label(predict)
        # i = i+1
        # acc = accuracy(predict, vlabels)
        # mean_acc += acc
        # print('acc : ',acc)
        break
    print('mean acc : ', mean_acc / 10)
    # train_features = nd.array(train_features,ctx=mx.cpu())
    # train_labels = nd.array(train_labels,ctx=mx.cpu())
    # net = train(train_features, train_labels)
    # test_features = nd.array(test_features)
    # print('start predict')
    # predict = net(test_features)