Beispiel #1
0
def depthImage2depthFrame(depthImage):
    IRcalibration = ld.getIRCalib()
    intrinsicMatrix = np.array(
        [[IRcalibration['fc'][0], 0, IRcalibration['cc'][0]],
         [0, IRcalibration['fc'][1], IRcalibration['cc'][1]], [0, 0, 1]])
    inverseIM = np.linalg.inv(intrinsicMatrix)

    depthFrameP = np.ones((depthImage.shape[0], depthImage.shape[1], 4))

    for i in range(depthImage.shape[0]):
        for j in range(depthImage.shape[1]):
            if (depthImage[i, j] != 0):
                depthFrameP[i, j, :3] = np.matmul(
                    inverseIM,
                    np.array([[0.01 * depthImage[i, j] * (i + 1)],
                              [0.01 * depthImage[i, j] * (j + 1)],
                              [0.01 * depthImage[i, j]]])).reshape((3, ))
    valid = np.logical_and((depthFrameP[:, :, 0] != 1),
                           (depthFrameP[:, :, 1] != 1),
                           (depthFrameP[:, :, 2] != 1))
    realDepthFrame = depthFrameP[valid, :]
    return realDepthFrame
Beispiel #2
0
import numpy as np
from transforms3d.euler import euler2mat, mat2euler
import load_data


IRCalib = load_data.getIRCalib()
Matrix_IRCalib = np.array([[IRCalib['fc'][0], IRCalib['ac']*IRCalib['fc'][0], IRCalib['cc'][0]],
                           [0, IRCalib['fc'][1], IRCalib['cc'][1]],
                           [0,0,1]])
RGBCalib = load_data.getRGBCalib()
Matrix_RGBCalib = np.array([[RGBCalib['fc'][0], RGBCalib['ac']*RGBCalib['fc'][0], RGBCalib['cc'][0]],
                           [0, RGBCalib['fc'][1], RGBCalib['cc'][1]],
                           [0,0,1]])
exIR_RGB = load_data.getExtrinsics_IR_RGB()
#transform from IR frame to RGB frame
RGB_T_IR = np.zeros((4,4))
RGB_T_IR[0:3, 0:3] = exIR_RGB['rgb_R_ir']
RGB_T_IR[:, 3] = [exIR_RGB['rgb_T_ir'][0], exIR_RGB['rgb_T_ir'][1],
                         exIR_RGB['rgb_T_ir'][2], 1]

def sensor2body(neck, head):
	Tz = np.zeros((4, 4))
	Ty = np.zeros((4, 4))
	#use the idxs to track the
	Rz = euler2mat(0, 0, neck, axes='sxyz')########################  neck
	Tz [0:3, 0:3] = Rz
	Tz [:, 3] = [0, 0, 0.07, 1]
	Ry = euler2mat(0, head, 0, axes='sxyz')  ######################    head
	Ty [0:3, 0:3] = Ry #np.dot(np.array(Rz), np.array(Ry))  # transform from lidar to body frame
	Ty [:, 3] = [0, 0, 0.33, 1]  # 0.48 is the height above the center mass, head above center mass 33cm + lidar above
	b_T_c = np.dot(Ty, Tz)
Beispiel #3
0
def texture_mapping(MAP, w_T_b_best):

    IRCalib = getIRCalib()
    Matrix_IRCalib = np.array([[
        IRCalib['fc'][0], IRCalib['ac'] * IRCalib['fc'][0], IRCalib['cc'][0]
    ], [0, IRCalib['fc'][1], IRCalib['cc'][1]], [0, 0, 1]])
    RGBCalib = getRGBCalib()
    Matrix_RGBCalib = np.array([[
        RGBCalib['fc'][0], RGBCalib['ac'] * RGBCalib['fc'][0],
        RGBCalib['cc'][0]
    ], [0, RGBCalib['fc'][1], RGBCalib['cc'][1]], [0, 0, 1]])
    exIR_RGB = getExtrinsics_IR_RGB()

    l0 = get_lidar("lidar/train_lidar0")
    r0 = get_rgb("cam/RGB_0")
    d0 = get_depth("cam/DEPTH_0")

    lidar_t = []
    depth_t = []
    Tneck = np.zeros((4, 4))
    Thead = np.zeros((4, 4))

    for i in range(len(l0)):
        lidar_t1 = np.array(l0[i]['t'][0])
        lidar_t.append(lidar_t1)

    for j in range(len(d0)):
        depth_t1 = np.array(d0[j]['t'][0])
        depth_t.append(depth_t1)

    rgb_it = [r['image'] for r in r0]
    rgb_angle = [r['head_angles'] for r in r0]
    rgb_neck = rgb_angle[0]
    rgb_head = rgb_angle[1]

    depth_dt = [d['depth'] for d in d0]

    ############## do the time alignment for lidar time compare with depth time
    xxx = np.array((lidar_t))
    yyy = np.array((depth_t))

    xx = np.array(([l[0] for l in xxx]))
    yy = np.array(([l[0] for l in yyy]))
    idx1 = np.searchsorted(xx, yy, side="left").clip(max=xx.size - 1)
    mask = (idx1 > 0) & \
           ((idx1 == len(xx)) | (np.fabs(yy - xx[idx1 - 1]) < np.fabs(yy - xx[idx1])))
    ##### the index is the resulting lidar timestamp index that has the closest time step as the depth's timestamp
    index1 = np.array((idx1 - mask)).tolist()

    #print(index)

    # transform from ir to rgb frame rgb T_ir
    rgb_T_ir = np.zeros((4, 4))
    rgb_T_ir[0:3, 0:3] = exIR_RGB['rgb_R_ir']
    rgb_T_ir[0, 3] = exIR_RGB['rgb_T_ir'][0]
    rgb_T_ir[1, 3] = exIR_RGB['rgb_T_ir'][1]
    rgb_T_ir[2, 3] = exIR_RGB['rgb_T_ir'][2]
    rgb_T_ir[3, 3] = 1

    # tranform from rgb to body frame  b_T_rgb

    # use the idxs to track the
    Rn = euler2mat(0, 0, rgb_neck, axes='sxyz')
    Tneck[0:3, 0:3] = Rn
    Tneck[0, 3] = 0
    Tneck[1, 3] = 0
    Tneck[2, 3] = 0.07
    Tneck[3, 3] = 1
    Rh = euler2mat(0, rgb_head, 0, axes='sxyz')
    Thead[0:3, 0:3] = Rh  # transform from lidar to body frame
    Thead[0, 3] = 0
    Thead[1, 3] = 0
    Thead[2, 3] = 0.33
    Thead[3, 3] = 1
    b_T_rgb = np.dot(Thead, Tneck)

    # w_T_b is the current best particle
    w_T_c_rgb = np.dot(w_T_b_best, b_T_rgb)

    o_T_c = np.array([[0, -1, 0, 0], [0, 0, -1, 0], [1, 0, 0, 0], [0, 0, 0,
                                                                   1]])

    map_x = MAP['sizex']
    map_y = MAP['sizey']

    my_x = map_x.tolist()
    my_y = map_y.tolist()

    tmt = np.zeros((MAP['sizex'], MAP['sizey'], 3))

    #tmt[my_x, my_y, 0] =
    #tmt[my_x, my_y, 1] =
    #tmt[my_x, my_y, 2] =

    return tmt
Beispiel #4
0
    #Specify map properties
    resolution = .05
    xmin = -40
    ymin = -40
    xmax = 40
    ymax = 40
    numParticle = 10
    N_threshold = 35
    yRange = np.arange(-resolution, resolution + 0.01, resolution)
    xRange = np.arange(-resolution, resolution + 0.01, resolution)
    depthFolder = 'C:/Users/Baoqian Wang/Google Drive/cam/DEPTH_0'
    rgbFolder = 'C:/Users/Baoqian Wang/Google Drive/cam/RGB_0'
    depthImageList = ld.get_depth(depthFolder)
    rgbImageList = ld.get_rgb(rgbFolder)
    #Initialize ParticleSlam object
    particleSlam = ParticleFilterSlam(numParticle, N_threshold, resolution,
                                      xmin, ymin, xmax, ymax, xRange, yRange)

    # Get lidar data
    lidar = ld.get_lidar("./lidar/train_lidar0")

    # Get the head angles data
    joint = ld.get_joint("./joint/train_joint0")
    IRcalibration = ld.getIRCalib()
    # Run the SLAM
    MAP, bestParticles = particleSlam.slam(lidar, joint, rgbImageList,
                                           depthImageList)

    #fig1 = plt.figure(2)
    #plt.imshow(MAP['show_map'], cmap = "hot")
    #plt.show()
Beispiel #5
0
y_corr_range_cnt = len(y_corr_range)
corr_center_index = len(x_corr_range) * len(y_corr_range) / 2
yaw_corr_range = 1 * x_corr_range
yaw_corr_range_cnt = len(yaw_corr_range)
log_fill = np.log(8)  # choosing g(1)=8

# camera/depth related variables if RGB/DEPTH data exists
if rgb_exists:
    rgb_index, rgb_cnt = 0, len(RGBs)
    depth_index, depth_cnt = 0, len(depths)

    exir_rgb = load.getExtrinsics_IR_RGB()
    ir_to_RGB = np.eye(4)
    ir_to_RGB[:3, :3], ir_to_RGB[:3, 3] = exir_rgb['rgb_R_ir'], exir_rgb[
        'rgb_T_ir']
    ir_calib = load.getIRCalib()
    K_ir = np.eye(3)
    # alpha_c is 0, no need to update index [0,1]
    K_ir[[0, 1], [0, 1]], K_ir[:2, 2] = ir_calib['fc'], ir_calib['cc']
    rgb_Calib = load.getRGBCalib()
    K_rgb = np.eye(3)
    # alpha_c is 0, no need to update index [0,1]
    K_rgb[[0, 1], [0, 1]], K_rgb[:2, 2] = rgb_Calib['fc'], rgb_Calib['cc']
    optical_to_regular = np.zeros((3, 3))
    optical_to_regular[[0, 1, 2], [2, 0, 1]] = np.array([1, -1, -1])

    # kinect sensor pose in head frame
    kinect_to_head = np.eye(4)
    kinect_to_head[2, 3] = 0.07

    rgb_nrows, rgb_ncols, _ = RGBs[0][