Beispiel #1
0
    if not os.path.exists(args.output):
        os.makedirs(args.output)

    print('-------------')
    print('BATCH        : {}'.format(args.batch))
    print('EPOCH        : {}'.format(args.epoch))
    print('ALPA         : {}'.format(args.alpha))
    print('DROPOUT      : {}'.format(args.dropout))
    print('Load Weights?: {}'.format(args.weights))
    print('Dataset      : {}'.format(args.dataset))
    print('OUTPUT       : {}'.format(args.output))
    print('-------------')

    # TODO: abstract method to normalize speed.
    df_train, df_val = getDataFromThunderhill(args.dataset, split=True, randomize=True, balance=True)
    print('TRAIN:', len(df_train))
    print('VALIDATION:', len(df_val))
    print(df_train[['speed', 'throttle', 'brake', 'accel']].describe())
    model = NvidiaModel(args.dropout)

    print(model.summary())

    # Saves the model...
    with open(os.path.join(args.output, 'model.json'), 'w') as f:
        f.write(model.to_json())

    try:
        if args.weights:
            print('Loading weights from file ...')
            model.load_weights(args.weights)
Beispiel #2
0
    if not os.path.exists(args.output):
        os.makedirs(args.output)

    print('-------------')
    print('BATCH        : {}'.format(args.batch))
    print('EPOCH        : {}'.format(args.epoch))
    print('ALPA         : {}'.format(args.alpha))
    print('DROPOUT      : {}'.format(args.dropout))
    print('Load Weights?: {}'.format(args.weights))
    print('Dataset      : {}'.format(args.dataset))
    print('OUTPUT       : {}'.format(args.output))
    print('-------------')

    # TODO: abstract method to normalize speed.
    df_train, df_val = getDataFromThunderhill(args.dataset,
                                              args.output,
                                              balance=False)
    print('TRAIN:', len(df_train))
    print('VALIDATION:', len(df_val))
    print(df_train.describe())
    model = NvidiaModel(args.dropout)

    print(model.summary())

    # Saves the model...
    with open(os.path.join(args.output, 'model.json'), 'w') as f:
        f.write(model.to_json())

    try:
        if args.weights:
            print('Loading weights from file ...')