def __init__(self, doHSVhist=False):
        # store the number of points and radius
        #self.image = image
        self.doHSVhist = doHSVhist

        # initialize the local binary pattern descriptor
        self.desc = LocalBinaryPatterns(24, 8)
def get_LBP_Features(trainingPath, testingPath, p, r):
	from localbinarypatterns import LocalBinaryPatterns
	from sklearn.utils import shuffle

	# initialize the local binary patterns descriptor along with the data and label lists
	desc = LocalBinaryPatterns(p, r)
	data = []
	labels = []
	test_data = []
	test_labels = []
	
	start_time = time.time()

	# loop over the training images
	for imagePath in paths.list_files(trainingPath, validExts=(".png",".ppm")):
		
		# load the image, convert it to grayscale, and describe it
		image = cv2.imread(imagePath)
		gray = np.matrix(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY))
		resized_image = cv2.resize(gray, (32, 32))
		hist = desc.describe(resized_image)
		hist = hist / max(hist)

		# extract the label from the image path, then update the
		# label and data lists
		labels.append(imagePath.split("/")[-2])
		data.append(hist)

	# loop over the testing images
	for imagePath in paths.list_files(testingPath, validExts=(".png",".ppm")):

		# load the image, convert it to grayscale, describe it, and classify it
		image = cv2.imread(imagePath)
		gray = np.matrix(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY))
		resized_image = cv2.resize(gray, (32, 32))
		hist = desc.describe(resized_image)
		hist = hist / max(hist)

		# extract the label from the image path, then update the
		# label and data lists
		test_labels.append(imagePath.split("/")[-2])
		test_data.append(hist)

	feature_extraction_runtime = (time.time() - start_time)

	data = np.array(data)
	labels = np.array(labels)
	test_data = np.array(test_data)
	test_labels = np.array(test_labels)

	data, labels = shuffle(data,labels)

	print "[INFO] LBP Features are ready!"
	print "Total image:", len(data) + len(test_data)
	print "Feature extraction runtime:", feature_extraction_runtime
	print "Average for one image:", feature_extraction_runtime / (len(data) + len(test_data))

	return (data, labels, test_data, test_labels)
Beispiel #3
0
def lbp_for_one_image(faces, image):
    if len(faces) == 0:
        print "No faces detected."
        return
    elif len(faces) > 1:
        print "Sorry, more than one facial expression is not supported now."
        return
    else:
        x, y, w, h = faces[0]
        img = image[y: y+h, x: x + w]   # face part
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        desc = LocalBinaryPatterns(8, 1)
        desc.describe(gray, 2)
    def __init__(self):
        # self.cam = cv2.VideoCapture(0)
        # self.cam.set(3, 320)
        # self.cam.set(4, 240)
        self.cam = WebcamVideoStream(src=0, resolution=(640, 480)).start()
        self.fps = FPS().start()

        ret, self.frame = self.cam.read()

        self.conf = {
            'ColorFrameNum': 7,
            'LBPFrameNum': 7,
            'MaxFrameDiffClr': 15,
            'MaxLBPFrameUpdate': 30,
            'L_Weight': 0.3,
            'A_Weight': 0.7,
            'B_Weight': 0.7
        }

        self.ColorCheck = AdaptiveThreshold(teta=3, max_lost_cnt=1)
        self.LBPCheck = AdaptiveThreshold(teta=2, max_lost_cnt=1)

        self.ColorDistance = LABDistance()
        self.LBPDistance = LocalBinaryPatterns(
            numPoints=8,
            radius=2,
            update_prev_hist=self.conf['MaxLBPFrameUpdate'])

        self.isLost = False
        self.isLBPLost = False

        self.height, self.width = self.frame.shape[:2]

        self.kernel_e = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
        self.kernel_d = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
        self.kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))

        cv2.namedWindow('camshift')
        self.obj_select = RectSelector('camshift', self.onmouse)

        self.LAB_CHANNELS = (
            (24, [0, 256], "light"),  # L
            (24, [0, 256], "a"),  # a
            (24, [0, 256], "b")  # b
        )

        self.show_backproj = False
        self.track_window = None
        self.histLAB = []
        self.track_box = None
def ExtractFeatures(image):
    """
    Extract Features. 
        -> Features Extracted: 
            * LBP
            * Bfx_Basicint
            * Haralick
            * free Threshold Adjacency Statistics
            * Zernike Moments
            * HOG

    """
    gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    #LBP Features
    desc = LocalBinaryPatterns(12, 4)
    lbp_hist = desc.describe(gray_image)
    lbp_hist = lbp_hist.reshape(1, len(lbp_hist))

    #Bfx_Basicint
    R, _, _ = Bim_segbalu(gray_image)
    options = {'show': True, 'mask': 5}
    basicint, Xn = Bfx_basicint(gray_image, R, options)

    #Haralick features
    haralick = mahotas.features.haralick(gray_image).mean(0)
    haralick = haralick.reshape(1, len(haralick))

    #parameter free Threshold Adjacency Statistics
    pftas = mahotas.features.pftas(gray_image)
    pftas = pftas.reshape(1, len(pftas))

    #Zernike Moments
    zernike = mahotas.features.zernike_moments(gray_image, radius=2)
    zernike = zernike.reshape(1, len(zernike))

    #HOG [Fix Dimentionality]
    HOG = hog(gray_image,
              orientations=8,
              pixels_per_cell=(16, 16),
              cells_per_block=(1, 1),
              visualise=False)
    HOG = HOG.reshape(1, len(HOG))

    #Join Features
    features = np.concatenate(
        (lbp_hist, basicint, haralick, pftas, zernike, HOG), axis=1)

    return features
Beispiel #6
0
from localbinarypatterns import LocalBinaryPatterns
from imutils import paths
import cv2
import pandas as pd
import numpy as np
from skimage import feature
import matplotlib.pyplot as plt

db = 'yale'
data_training = 'db/%s' % db

P = 8  # number of points
R = 8  # radius

dataset = [file for file in paths.list_images(data_training)]
desc = LocalBinaryPatterns(8, 8)

gbr = paths.list_images(data_training)
nama_gbr = gbr.__next__()
print(nama_gbr)
image = cv2.imread(nama_gbr)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
lbp = feature.local_binary_pattern(gray, P, R, method='uniform')
hist = np.histogram(lbp.ravel(), bins=range(0, P + 3))
h = hist[0].astype('float')
h /= (h.sum())
print(h, h.sum())
plt.bar(np.array(range(0, P + 2)), h)
plt.xticks(np.array(range(0, P + 2)))
plt.ylabel('Percentage')
plt.show()
class App(object):
    def __init__(self):
        # self.cam = cv2.VideoCapture(0)
        # self.cam.set(3, 320)
        # self.cam.set(4, 240)
        self.cam = WebcamVideoStream(src=0, resolution=(640, 480)).start()
        self.fps = FPS().start()

        ret, self.frame = self.cam.read()

        self.conf = {
            'ColorFrameNum': 7,
            'LBPFrameNum': 7,
            'MaxFrameDiffClr': 15,
            'MaxLBPFrameUpdate': 30,
            'L_Weight': 0.3,
            'A_Weight': 0.7,
            'B_Weight': 0.7
        }

        self.ColorCheck = AdaptiveThreshold(teta=3, max_lost_cnt=1)
        self.LBPCheck = AdaptiveThreshold(teta=2, max_lost_cnt=1)

        self.ColorDistance = LABDistance()
        self.LBPDistance = LocalBinaryPatterns(
            numPoints=8,
            radius=2,
            update_prev_hist=self.conf['MaxLBPFrameUpdate'])

        self.isLost = False
        self.isLBPLost = False

        self.height, self.width = self.frame.shape[:2]

        self.kernel_e = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
        self.kernel_d = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
        self.kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))

        cv2.namedWindow('camshift')
        self.obj_select = RectSelector('camshift', self.onmouse)

        self.LAB_CHANNELS = (
            (24, [0, 256], "light"),  # L
            (24, [0, 256], "a"),  # a
            (24, [0, 256], "b")  # b
        )

        self.show_backproj = False
        self.track_window = None
        self.histLAB = []
        self.track_box = None

    def onmouse(self, rect):
        xmin, ymin, xmax, ymax = rect
        labRoi = self.lab[ymin:ymax, xmin:xmax]
        bgrRoi = self.frame[ymin:ymax, xmin:xmax]

        self.calcLABhist(labRoi)
        self.ColorDistance.init(bgrRoi)

        self.track_window = (xmin, ymin, xmax - xmin, ymax - ymin)
        # self.init_suspend(labRoi)
        self.isLost = False
        self.isLBPLost = False
        self.fps.reset()

    def calcLABhist(self, labRoi):
        self.histLAB = []
        for channel, param in enumerate(self.LAB_CHANNELS):
            # Init LAB histogram
            hist = cv2.calcHist([labRoi], [channel], None, [param[0]],
                                param[1])
            hist = cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX)
            self.histLAB.append(hist)
            # Show hist of each channel separately
            # self.show_hist(hist, param[2])

    def calcBackProjection(self):
        ch_prob = []
        ch_back_proj_prob = []

        for channel, param in enumerate(self.LAB_CHANNELS):
            prob = cv2.calcBackProject([self.lab], [channel],
                                       self.histLAB[channel], param[1], 1)
            cv2.imshow('Back projection ' + str(param[2]), prob)
            ret, prob = cv2.threshold(prob, 70, 255, cv2.THRESH_BINARY)
            cv2.imshow('Back projection thresh ' + str(param[2]), prob)
            # prob = cv2.morphologyEx(prob, cv2.MORPH_ERODE, self.kernel_e, iterations=1)
            # prob = cv2.morphologyEx(prob, cv2.MORPH_DILATE, self.kernel, iterations=1)
            prov = cv2.morphologyEx(prob,
                                    cv2.MORPH_CLOSE,
                                    self.kernel_e,
                                    iterations=2)
            ch_prob.append(prob)

        ch_back_proj_prob.append(
            cv2.addWeighted(ch_prob[0], self.conf['L_Weight'], ch_prob[1],
                            self.conf['A_Weight'], 0))

        ch_back_proj_prob.append(
            cv2.addWeighted(ch_prob[0], self.conf['L_Weight'], ch_prob[2],
                            self.conf['B_Weight'], 0))

        back_proj_prob = cv2.bitwise_and(ch_back_proj_prob[0],
                                         ch_back_proj_prob[1])
        ret, back_proj_prob = cv2.threshold(back_proj_prob, 150, 255,
                                            cv2.THRESH_BINARY)

        back_proj_prob = cv2.morphologyEx(back_proj_prob,
                                          cv2.MORPH_ERODE,
                                          self.kernel_e,
                                          iterations=1)
        back_proj_prob = cv2.morphologyEx(back_proj_prob,
                                          cv2.MORPH_DILATE,
                                          self.kernel_e,
                                          iterations=2)

        return back_proj_prob

    @staticmethod
    def show_hist(hist, channel='None'):
        bin_count = hist.shape[0]
        bin_w = 24
        img = np.zeros((256, bin_count * bin_w, 3), np.uint8)
        for i in range(bin_count):
            h = int(hist[i])
            if str(channel) == 'light':
                cv2.rectangle(img, (i * bin_w + 2, 255),
                              ((i + 1) * bin_w - 2, 255 - h),
                              (int(255.0 * i / bin_count), 255, 255), -1)
            elif str(channel) == 'a':
                cv2.rectangle(img, (i * bin_w + 2, 255),
                              ((i + 1) * bin_w - 2, 255 - h),
                              (255, int(255.0 * i / bin_count), 255), -1)
            elif str(channel) == 'b':
                cv2.rectangle(img, (i * bin_w + 2, 255),
                              ((i + 1) * bin_w - 2, 255 - h),
                              (255, 255, int(255.0 * i / bin_count)), -1)
            else:
                cv2.rectangle(img, (i * bin_w + 2, 255),
                              ((i + 1) * bin_w - 2, 255 - h), (255, 255, 255),
                              -1)
        img = cv2.cvtColor(img, cv2.COLOR_LAB2BGR)
        cv2.imshow('hist ' + str(channel), img)

    def camshift_algorithm(self):
        prob = self.calcBackProjection()
        term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1)
        self.track_box, self.track_window = cv2.CamShift(
            prob, self.track_window, term_crit)

        if self.show_backproj:
            cv2.imshow("Back Projection", prob[..., np.newaxis])
        else:
            cv2.destroyWindow("Back Projection")

    def run(self):
        scaling_factor = 0.5
        last_frame_number = 0

        while True:
            if not self.obj_select.dragging:
                ret, self.frame = self.cam.read()
                self.frame = cv2.resize(self.frame,
                                        None,
                                        fx=scaling_factor,
                                        fy=scaling_factor,
                                        interpolation=cv2.INTER_AREA)
                self.lab = cv2.cvtColor(self.frame, cv2.COLOR_BGR2LAB)
                # self.lab = cv2.GaussianBlur(self.lab, (3,3), 0)
                kernel = np.ones((5, 5), np.float32) / 25
                self.lab = cv2.filter2D(self.lab, -1, kernel)
                self.gray = cv2.cvtColor(self.frame, cv2.COLOR_BGR2GRAY)

            if ret:
                vis = self.frame.copy()

            track_window_condition = ((self.track_window)
                                      and (self.track_window[2] > 0)
                                      and (self.track_window[3] > 0))

            target_lost = self.isLost and self.isLBPLost

            # Main proccess flow
            if track_window_condition:
                if not target_lost:
                    # Apply CamShift algorithm and get new track_box
                    self.camshift_algorithm()

                    if self.fps.NumFrame % self.conf[
                            'ColorFrameNum'] == 0 and not self.isLost:
                        color_distance = self.ColorDistance.update(
                            self.frame, self.track_box)
                        self.isLost = self.ColorCheck.target_lost(
                            color_distance)
                        print("[INFO] Color track is lost:  '{}'\n".format(
                            self.isLost))
                        if self.isLost:
                            last_frame_number = self.fps.NumFrame

                    if self.fps.NumFrame % self.conf[
                            'LBPFrameNum'] == 0 and not self.isLBPLost:
                        LBP_distance = self.LBPDistance.update(
                            self.gray, self.track_window)
                        self.isLBPLost = self.LBPCheck.target_lost(
                            LBP_distance)
                        print("[INFO] LBP track is lost:  '{}'\n".format(
                            self.isLBPLost))
                        if self.isLBPLost:
                            last_frame_number = self.fps.NumFrame

                    if self.fps.NumFrame - last_frame_number >= self.conf[
                            'MaxLBPFrameUpdate']:
                        self.isLBPLost = False
                        self.isLost = False

                    try:
                        cv2.ellipse(vis, self.track_box, (0, 0, 255), 2)
                        pts = cv2.boxPoints(self.track_box)
                        pts = np.int0(pts)
                        cv2.polylines(vis, [pts], True, 255, 2)
                    except:
                        print(self.track_box)
                else:
                    cv2.putText(vis, 'Target Lost', (10, 230),
                                cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 1,
                                cv2.LINE_AA)
                    # print("[INFO] Starting recovery proccess")

            elif not track_window_condition:
                cv2.putText(vis, 'Mark area of the object', (10, 230),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1,
                            cv2.LINE_AA)

            # frame processing throughput rate
            fps = self.fps.approx_compute()
            cv2.putText(vis, 'FPS {:.3f}'.format(fps), (10, 10),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.3, (255, 255, 255), 1,
                        cv2.LINE_AA)

            self.obj_select.draw(vis)
            cv2.imshow('camshift', vis)

            ch = 0xFF & cv2.waitKey(1)
            if ch == 27:
                break
            if ch == ord('b'):
                self.show_backproj = not self.show_backproj
        cv2.destroyAllWindows()
from sklearn.svm import LinearSVC
from localbinarypatterns import LocalBinaryPatterns

ap = argparse.ArgumentParser()
ap.add_argument("-t",
                "--treinamento",
                required=True,
                help="path to the training images")
ap.add_argument("-e",
                "--teste",
                required=True,
                help="path to the testing images")
args = vars(ap.parse_args())

#inicializa o descritor LBP com as listas dos dados e das classes
desc = LocalBinaryPatterns(8, 4)
data = []
labels = []

# para cada imagem no conjunto de treinamento
i = 0
for imagePath in paths.list_images(args["treinamento"]):
    # carrega a imagem da pasta de treinamento,
    # converte em escala cinza
    image = cv2.imread(imagePath)

    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

    hist = desc.describe(gray)

    #extrai a classe do caminho da imagem, no caso, olho aberto e fechado
Beispiel #9
0
import dlib

data_set = []
labels_set = []
eye_coords_set = []
images_set = []

list_of_eye_coords = []
list_of_hists = []
list_of_images = []

#initialize the classifier
model = LinearSVC(C=100.0, random_state=42)

#initialize the descriptor model
desc = LocalBinaryPatterns(24, 8)

#var_initial is 0 only when training
var_initial = 1

# initialize haar cascade eye and face detector
face_cascade = cv2.CascadeClassifier(
    'D:/Thesis/haarcascade_frontalface_default.xml')
eye_cascade = cv2.CascadeClassifier('D:/Thesis/haarcascade_eye.xml')

# initialize dlib's face detector (HOG-based) and then create
# the facial landmark predictor
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(
    'D:/Thesis/shape_predictor_68_face_landmarks.dat')
Beispiel #10
0
import pickle
import cv2

# ---------------------------------------------------
# PROJEKT Z SNR - Zadanie 1. w 3 aktach
# by Krzysztof Krupiński 2018
# ---------------------------------------------------
# AKT 1: Ekstrakcja cech obrazów za pomocą deskryptora

# Ścieżka główna do folderu z liśćmi
trainingMainPath = "/home/krzysztof/Dokumenty/SNR_grupa1/Folio Leaf Dataset/Folio"
# paths - wszystkie (pełne) ścieżki do zdjęć liści
paths = metody.getListOfFiles(
    trainingMainPath)  # Lista wszystkich plików w folderze
desc = LocalBinaryPatterns(
    16, 2
)  # Obiekt klasy LBP - deksryptor LBP 8 - liczba próbek w sąsiedztwie, 2 - promień sąsiedztwa
data = []
labels = []

licznik = 0  # Do wyświetlania postępou ekstracji
allFiles = len(paths)

print("Ekstrakcja cech\n")
for imagePath in paths:
    image = cv2.imread(imagePath)  # Wczytanie obrazu
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)  # Skala szarości
    hist = desc.describe(gray)  # LBP wykonane na obrazie - zwraca histogram

    labels.append(imagePath.split("/")[-2])  # Tylko nazwa kwiatu
    data.append(hist)
Beispiel #11
0

db = 'jaffe'
data_training = 'db/%s' % db

points = range(8, 70, 4)
radius = range(4, 21)
par = list(itertools.product(points, radius))
hasil = []

dataset = [file for file in paths.list_images(data_training)]

for p in par:
    print("##### points: %d, radius:%d #####" % p)
    # inicializar o descritor de padrões binários locais
    desc = LocalBinaryPatterns(p[0], p[1])
    data = []
    labels = []

    # loop nas imagens de treinamento
    print(data_training, len(dataset))
    for imagePath in paths.list_images(data_training):
        # carregue a imagem, convertendo em tons de cinza
        # print("test:", imagePath)
        image = cv2.imread(imagePath)
        try:
            gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        except:
            print('ERROR di:', imagePath)
        hist = desc.describe(gray)
        # extraia o rótulo do caminho da imagem e atualiza o
Beispiel #12
0
    # otherwise, the height is None
    else:
        # calculate the ratio of the width and construct the
        # dimensions
        r = width / float(w)
        dim = (width, int(h * r))

    # resize the image
    resized = cv2.resize(image, dim, interpolation = inter)

    # return the resized image
    return resized

# initialize the local binary patterns descriptor along with
# the data and label lists
desc = LocalBinaryPatterns(24, 8)
data_real = []
labels_real = []
data_fake = []
labels_fake = []

detector = cv2.CascadeClassifier("face_detector/haarcascade_frontalface_default.xml")
real_id = 0

# loop over the real images
for imagePath in paths.list_images("frames_reais/"):
    real_id += 1

	# load the image, convert it to grayscale, and describe it
    image = cv2.imread(imagePath)
from sklearn.svm import LinearSVC
from imutils import paths
import argparse
import cv2

# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-t", "--training", required=True,
	help="path to the training images")
ap.add_argument("-e", "--testing", required=True, 
	help="path to the tesitng images")
args = vars(ap.parse_args())

# initialize the local binary patterns descriptor along with
# the data and label lists
desc = LocalBinaryPatterns(24, 8)
data = []
labels = []

# loop over the training images
for imagePath in paths.list_images(args["training"]):
	# load the image, convert it to grayscale, and describe it
	image = cv2.imread(imagePath)
	gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
	hist = desc.describe(gray)

	# extract the label from the image path, then update the
	# label and data lists
	labels.append(imagePath.split("/")[-2])
	data.append(hist)
from balu.ImageProcessing import Bim_segbalu
from Bfx_basicint import Bfx_basicint
from skimage.feature import hog
import numpy as np
from mahotas.features import surf

#Load Image
filename = 'Cl_1_2_AB.png'
image = cv2.imread(filename)
image = image[0:32, 0:32]

#convert image to grayscale
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

#LBP Features
desc = LocalBinaryPatterns(12, 4)
lbp_hist = desc.describe(gray_image)
lbp_hist = lbp_hist.reshape(1, len(lbp_hist))

#Bfx_Basicint
R, _, _ = Bim_segbalu(gray_image)
options = {'show': True, 'mask': 5}
basicint, Xn = Bfx_basicint(gray_image, R, options)

#Haralick features
haralick = mahotas.features.haralick(gray_image).mean(0)
haralick = haralick.reshape(1, len(haralick))

#parameter free Threshold Adjacency Statistics
pftas = mahotas.features.pftas(gray_image)
pftas = pftas.reshape(1, len(pftas))
Beispiel #15
0
def main():
	# construct the argument parse and parse the arguments
	ap = argparse.ArgumentParser()
	ap.add_argument("-t", "--training", required=True,
		help="path to the training images")
	ap.add_argument("-e", "--testing", required=True, 
		help="path to the tesitng images")
	args = vars(ap.parse_args())

	# initialize the local binary patterns descriptor along with the data and label lists
	desc = LocalBinaryPatterns(24, 8)
	data = []
	labels = []

	# initialize the actual and predicted vectors
	y_act = []
	y_pred = []


	# loop over the training images
	for imagePath in paths.list_files(args["training"], validExts=(".png",".ppm")):
		
		# load the image, convert it to grayscale, and describe it
		image = cv2.imread(imagePath)
		gray = np.matrix(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY))
		resized_image = cv2.resize(gray, (32, 32))
		hist = desc.describe(resized_image)
		hist = hist / max(hist)

		# extract the label from the image path, then update the
		# label and data lists
		labels.append(imagePath.split("/")[-2])
		data.append(hist)


	# shuffle datas and labels before trained a model
	X = np.array(data)
	y = np.array(labels)
	#X, y = shuffle(X,y)

	# find best parameters before trained a model
	best_parameters = svc_param_selection(X,y)
	best_gamma =  best_parameters.get("gamma")
	best_kernel = best_parameters.get("kernel")
	print str(best_gamma), best_kernel
	# raw_input()

	# train a Linear SVM on the data
	model = svm.NuSVC(nu = 0.01,kernel=best_kernel, gamma=best_gamma)
	model.fit(X, y)


	# loop over the testing images
	for imagePath in paths.list_files(args["testing"], validExts=(".png",".ppm")):

		# load the image, convert it to grayscale, describe it, and classify it
		image = cv2.imread(imagePath)
		gray = np.matrix(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY))
		resized_image = cv2.resize(gray, (32, 32))
		hist = desc.describe(resized_image)
		hist = hist / max(hist)

		# prediction for each test image
		prediction = model.predict([hist])[0]

		# prepare data to append into lists
		inpt = str(imagePath.split("/")[-2])
		outpt = str(prediction)
		y_act.append(int(inpt)) 
		y_pred.append(int(outpt))


	# calculate match_count and accuracy to sho test result
	match_count = sum([int(y==y_) for y, y_ in zip(y_act, y_pred)])
	accuracy = float(match_count) / float(len(y_act))
	print "\nAccuracy:" + str(accuracy) + "\n"
Beispiel #16
0
def get_all_samples(path, p=24, r=8):
    # initialize the local binary patterns descriptor along with the data and label lists
    desc = LocalBinaryPatterns(p, r)
    data = []
    labels = []
    classSamplesList = []
    samples_amount_of_classes = []
    currentClass = None
    flag = False

    class_list = os.listdir(path)
    class_list.remove('.DS_Store')
    class_list.remove('Readme.txt')
    counter = len(class_list)

    lastClassPath = ''
    # loop over the training images
    for imagePath in paths.list_files(path, validExts=(".png", ".ppm")):
        if (flag == False):
            currentClass = imagePath.split("/")[-2]
            labels.append(currentClass)
            counter -= 1
            flag = True
        else:
            if imagePath.split("/")[-2] != currentClass:
                currentClass = imagePath.split("/")[-2]
                classSamplesList.append(np.transpose(np.array(data)))
                samples_amount_of_classes.append(len(data))
                data = []
                labels.append(currentClass)
                counter -= 1
        if counter == 0:
            lastClassPath = imagePath
            break

        # load the image, convert it to grayscale, and describe it
        image = cv2.imread(imagePath)
        gray = np.matrix(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY))
        resized_image = cv2.resize(gray, (32, 32))
        hist = desc.describe(resized_image)
        hist = hist / max(hist)

        # extract the label from the image path
        data.append(hist)

    data = []
    head, _ = os.path.split(lastClassPath)

    for imagePath in paths.list_files(head, validExts=(".png", ".ppm")):
        # load the image, convert it to grayscale, and describe it
        image = cv2.imread(imagePath)
        gray = np.matrix(cv2.cvtColor(image, cv2.COLOR_BGR2GRAY))
        resized_image = cv2.resize(gray, (32, 32))
        hist = desc.describe(resized_image)
        hist = hist / max(hist)
        # extract the label from the image path
        data.append(hist)

    classSamplesList.append(np.transpose(np.array(data)))
    samples_amount_of_classes.append(len(data))

    all_samples = tuple(classSamplesList)
    all_samples = np.concatenate(all_samples, axis=1)
    """
    for i, val in enumerate(samples_amount_of_classes):
        print i, val
    raw_input()
    """
    return all_samples, labels, samples_amount_of_classes
Beispiel #17
0
#from imutils import paths
#import paths #imutils module
#import argparse
import cv2
import os
import glob
import numpy as np

trainingPath = "/Users/fegvilela/Documents/Unb/TCC/baseDados/training1/"
testingPath = "/Users/fegvilela/Documents/Unb/TCC/baseDados/testing1/"

pngFiles1 = convertImage(trainingPath)

# initialize the local binary patterns descriptor along with
# the data and label lists
desc = LocalBinaryPatterns(30, 5)  # LBP 30 pontos e raio 9 = melhor acurácia
data = []
labels = []
trueClass = []
predClass = []

# loop over the training images
for file in pngFiles1:
    # load the image, convert it to grayscale, and describe it
    image = cv2.imread(file)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # call from made lbp class/module = aplica LBP em imegem e retorna o histograma
    hist = desc.describe(gray)
    # extract the label from the image path (), then update the
    # label and data lists
    file = file.split(".")[0]
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-t",
                "--training",
                required=True,
                help="path to the training images")
ap.add_argument("-e",
                "--testing",
                required=True,
                help="path to the tesitng images")
args = vars(ap.parse_args())

# initialize the local binary patterns descriptor along with
# the data and label lists
desc = LocalBinaryPatterns(24, 8)
data = []
labels = []
# loop over the training images
for imagePath in paths.list_images(args["training"]):
    # load the image, convert it to grayscale, and describe it
    image = cv2.imread(imagePath)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    hist = desc.describe(gray)

    # extract the label from the image path, then update the
    # label and data lists
    labels.append(imagePath.split(".")[-2])
    # labels.append(os.path.split(os.path.dirname(imagePath))[-1])

    data.append(hist)
class CloudFeatureHistogram:
    def __init__(self, doHSVhist=False):
        # store the number of points and radius
        #self.image = image
        self.doHSVhist = doHSVhist

        # initialize the local binary pattern descriptor
        self.desc = LocalBinaryPatterns(24, 8)

    def get_feature_histogram(self, image):
        # load the image, convert it to grayscale, describe it,
        # and classify it

        # TOO SMOOTH
        #filtered = cv2.bilateralFilter(image, 7, 75, 75)
        # Median blur : remove large outliers
        #filtered = cv2.medianBlur(image, 5)  DON'T DO THIS EITHER!!!
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        #gray = cv2.cvtColor(filtered, cv2.COLOR_BGR2GRAY)


        # Do a histogram equalization to bring out contrast
        # create a CLAHE object (Arguments are optional).
        # is this slow????  - NO, SOMETHING ELSE IS MAKING SLIDING WINDOWS SLOW...............
        clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
        claheGray = clahe.apply(gray)

        # show the new image
        # cv2.imshow('claheGray', claheGray)
        # cv2.waitKey(0)
        # cv2.destroyAllWindows()

        # local binary pattern histogram
        lbpHist = self.desc.describe(claheGray)

        logging.debug("lbpHist = %s", lbpHist)

        # if self.doHSVhist :
        #
        #     # HSV histogram
        #     # channels = [0, 1] because we need to process both H and S plane.
        #     # bins = [180, 256] 180 for H plane and 256 for S plane.
        #     # range = [0, 180, 0, 256]
        #     # Hue value lies between 0 and 180 & Saturation lies between 0 and 256.
        #     hsv = cv2.cvtColor(filtered, cv2.COLOR_BGR2HSV)
        #
        #     # hsvHistTest = cv2.calcHist([hsv], [1], None, [256], [0, 255])
        #     # cv2.normalize(hsvHistTest, hsvHistTest, 0, 255, cv2.NORM_MINMAX)
        #     #logging.debug("hsvHistTest = %s", hsvHistTest)
        #
        #     # only look at the saturation.  Saturation of white/gray < 0.15 * 255 = 38
        #     (hsvHist, _) = np.histogram(hsv[:,:,1].ravel(),
        #                              bins=np.arange(0, 255),
        #                              #bins=np.arange(0, 7),
        #                              range=(0, 255))
        #
        #     # normalize the histogram
        #     eps = 1e-7
        #     hsvHist = hsvHist.astype("float")
        #     hsvHist /= (hsvHist.sum() + eps)
        #
        #     logging.debug("hsvHist.sum() = %s", hsvHist.sum())
        #     logging.debug("hsvHist = %s", hsvHist)
        #
        #     # Now normalize hsvHist :
        #     # normalize the histogram
        #     # eps = 1e-7
        #     # hsvHist = hsvHist.astype("float")
        #     # hsvHist /= (hsvHist.sum() + eps)
        #
        #     #print "hsvHist = " + str(hsvHist)
        #     #print "hsvHist = " + str(hsvHist.flatten)
        #
        #
        # if self.doHSVhist:
        #     # Make a concatenated feature vector of color statistics and lbp
        #     # texture features
        #     # (horizontally stack the two numpy arrays) [1,2,3] [4,5,6]  ->  [1,2,3,4,5,6]
        #     hist = np.hstack([lbpHist, hsvHist])
        #
        #     #logging.debug("hist = %s", hist )

        #     return hist

        return lbpHist