def __init__(self, dataset, pth_data, num_classes, num_samples_per_class, log): """ Args: num_samples_per_class: num samples to generate per class in one batch batch_size: size of meta batch size (e.g. number of functions) """ self.dataset = dataset.lower() self.num_samples_per_class = num_samples_per_class self.num_classes = num_classes self.pth_data = Path(pth_data).resolve() assert self.pth_data.exists(), 'The {} does not exists.'.format(self.pth_data) if self.dataset == 'toronto-coco-qa': data = torch.load(self.pth_data) self.all_words = data['all_words'] self.words_index = data['words_index'] self.max_word = len(self.words_index) for key in self.all_words: self.words_index[ int(self.words_index[key]) ] = key self.all_answers = data['all_answers'] #self.answers_index = data['answers_index'] self.base_training = data['training'] self.base_testing = data['testing'] self.meta_training = [SimpleQA(self.words_index, x) for x in self.base_training] self.meta_testing = [SimpleQA(self.words_index, x) for x in self.base_testing] for x in self.meta_training + self.meta_testing: x.check(self.max_word) elif self.dataset == 'ms-coco-ic': data = torch.load(self.pth_data) self.all_words = data['all_words'] self.words_index = data['words2index'] self.max_word = len(self.words_index) for key in self.all_words: self.words_index[ int(self.words_index[key]) ] = key self.base_training = data['training'] self.base_testing = data['testing'] self.meta_training = [SimpleQA(self.words_index, x, False) for x in self.base_training] self.meta_testing = [SimpleQA(self.words_index, x, False) for x in self.base_testing] for x in self.meta_training + self.meta_testing: x.check(self.max_word) else: raise ValueError('Unrecognized dataset : {}'.format(dataset)) print_log('Meta-Task : [{:}], train={:}, test={:}'.format(dataset, len(self.meta_training), len(self.meta_testing)), log)
def train(self): for itr in tqdm(np.arange(self.start_itr, self.n_itr)): logger.log("----\nIteration {}\n----".format(itr)) paths = self.obtain_samples(itr) data = self.process_samples(itr, paths) if self.train_model: self.add_paths_to_pool(data) if self.pool.size >= self.min_pool_size: train_dynamics.train_model( self.model, self.pool, n_train_batches=self.n_train_batches, train_batch_size=self.train_batch_size) self.optimize_policy(itr, data) logger.print_log() logger.save_values()
try: self.conn = psycopg2.connect("dbname='" + db_name + "' user='******' password='******' host='" + db_host + "'") return True except: print("DataBase Connection Error !!") print("dbname='" + db_name + "' user='******' password='******' host='" + db_host + "'") return False # connectionの取得 def get_pg_connection(self): return self.conn # PostgreSQL接続終了 def set_pg_connection_close(self, cur): cur.close() self.conn.close() # テスト用 if __name__ == '__main__': file_name = "access_log_" + datetime.datetime.now().strftime("%Y-%m-%d") + ".log" logger = logger.Logger(file_name) pg_connection = PgConnection() if pg_connection.set_pg_connection_open(): connectin = pg_connection.get_pg_connection() cursor = connectin.cursor() pg_connection.set_pg_connection_close(cursor) logger.print_log()
if e.errno == errno.ENOENT: unlink(self.target.name) else: raise else: # no output generated at all; that's ok unlink(self.tmpname_sout) unlink(self.target.name) if vars.VERBOSE or vars.XTRACE or vars.DEBUG: log('%s (done)\n\n', self.target.printable_name()) else: unlink(self.tmpname_sout) unlink(self.tmpname_arg3) if rv != 0: if vars.ONLY_LOG: logger.print_log(self.target) err('%s: exit code %d\n', self.target.printable_name(), rv) self.target.build_done(exitcode=rv) self.target.refresh() self._move_extra_results(self.outdir, self.target.dirname() or ".", rv) self.result[0] += rv self.result[1] += 1 if self.parent: self.parent.add_dep(self.target) finally: self.tmp_sout_f.close() self.target.dolock().unlock()
def get_help(): ''' Display indication to navigate in the CLI interface ''' logger.log('Print the help command') print(f'Usage: Image filter\n-h or ---help : To get all the commands\n' f'-i or --input-dir <directory>\n-o --output-dir <directory>') argument = ('-h', '---help', '--log-file', '--filter', '--config-file') if not (args[1] in argument): print('Command not found. Type ---help or -h') if args[1] in ('-h', '---help'): text = art.text2art("HELP") print(text) get_help() if args[1] == '--log-file': text = art.text2art("LOGS") print(text) logger.print_log(args[2]) if args[1] == '--config-file': apply_filter(args[2]) if args[1] == '--filter': text = art.text2art("FILTER") print(text) if len(args) == 2: print('Please entrer a filter') else: apply_filter(args[2])