Beispiel #1
0
    def __init__(self,
                 num_classes=3,
                 num_aux=23,
                 feat_dim=512,
                 cos_layer=True,
                 dropout=0.,
                 m=0.5,
                 image_net='tf_efficientnet_b3_ns',
                 pretrained=True):
        super().__init__()

        self.feat_dim = feat_dim
        self.cos_layer = cos_layer

        if pretrained == True:
            backbone = timm.create_model(image_net, pretrained=True)
        else:
            backbone = timm.create_model(image_net, pretrained=False)

        self.base = nn.Sequential(backbone.conv_stem, backbone.bn1,
                                  backbone.act1, backbone.blocks,
                                  backbone.conv_head, backbone.bn2,
                                  backbone.act2)

        self.pool = GeM(p=3.0, freeze_p=True)
        self.dropout = nn.Dropout(p=dropout)

        features_num = backbone.num_features * backbone.global_pool.feat_mult()
        # self.neck = nn.Sequential(
        #     nn.BatchNorm1d(features_num),
        #     nn.Linear(features_num, feat_dim, bias=False),
        #     nn.ReLU(inplace=True),
        #     nn.BatchNorm1d(feat_dim),
        #     nn.Linear(feat_dim, feat_dim, bias=False)
        # )
        self.neck = nn.Linear(features_num, feat_dim, bias=False)

        self.bottleneck = nn.BatchNorm1d(feat_dim)
        self.head = nn.Linear(feat_dim, num_aux)

        self.num_classes = num_classes

        if self.cos_layer:
            print('using cosine layer')
            self.arcface = ArcFace(self.feat_dim,
                                   self.num_classes,
                                   s=30.0,
                                   m=m)
        else:
            self.classifier = nn.Linear(self.feat_dim,
                                        self.num_classes,
                                        bias=False)
            self.classifier.apply(weights_init_classifier)
Beispiel #2
0
    def __init__(self,
                 num_classes=3,
                 feat_dim=512,
                 cos_layer=True,
                 dropout=0.,
                 image_net='resnet50',
                 pretrained=True):
        super().__init__()

        self.EX = 4
        self.feat_dim = feat_dim
        self.cos_layer = cos_layer

        if pretrained == True:
            backbone = timm.create_model(image_net, pretrained=True)
        else:
            backbone = timm.create_model(image_net, pretrained=False)

        self.base = nn.Sequential(backbone.conv1, backbone.bn1, backbone.act1,
                                  backbone.maxpool, backbone.layer1,
                                  backbone.layer2, backbone.layer3,
                                  backbone.layer4)

        self.pool = GeM(p=3.0, freeze_p=True)
        self.dropout = nn.Dropout(p=dropout)
        self.fc = nn.Linear(2048, self.feat_dim)

        self.num_classes = num_classes

        if self.cos_layer:
            print('using cosine layer')
            self.arcface = ArcFace(self.feat_dim,
                                   self.num_classes,
                                   s=30.0,
                                   m=0.30)
        else:
            self.classifier = nn.Linear(self.feat_dim,
                                        self.num_classes,
                                        bias=False)
            self.classifier.apply(weights_init_classifier)

        self.bottleneck = nn.BatchNorm1d(self.feat_dim)
        self.bottleneck.bias.requires_grad_(False)
        self.bottleneck.apply(weights_init_kaiming)
    def __init__(self,
                 num_classes=3,
                 num_aux=23,
                 feat_dim=512,
                 metric_loss='ArcFace',
                 dropout=0.,
                 m=0.5,
                 depth=50,
                 pretrained=True,
                 path='../input/backbone_pretrained/resnet101_ibn_a.pth.tar'):
        super().__init__()

        self.feat_dim = feat_dim
        self.metric_loss = metric_loss

        self.base = build_resnet_backbone(depth, pretrained, path)

        self.pool = GeM(p=3.0, freeze_p=True)
        self.dropout = nn.Dropout(p=dropout)
        self.neck = nn.Linear(2048, feat_dim, bias=False)
        self.bottleneck = nn.BatchNorm1d(feat_dim)
        self.head = nn.Linear(feat_dim, num_aux)

        self.num_classes = num_classes

        if self.metric_loss == 'ArcFace':
            print('using cosine layer')
            self.metric = ArcFace(self.feat_dim, self.num_classes, s=30.0, m=m)
        elif self.metric_loss == 'Circle':
            print('using circle layer')
            self.metric = Circle(self.feat_dim, self.num_classes, s=128.0, m=m)
        elif self.metric_loss == 'Softmax':
            self.classifier = nn.Linear(self.feat_dim,
                                        self.num_classes,
                                        bias=False)
            self.classifier.apply(weights_init_classifier)
        else:
            raise ValueError(
                'Please select one from ["ArcFace", "Circle", "Softmax"]')
Beispiel #4
0
    net = resnet_face50()

    device = torch.device("cuda:0")
    if torch.cuda.device_count() > 1:
        devices_ids = [i for i in range(torch.cuda.device_count())]
        print(devices_ids)
        net = nn.DataParallel(net, device_ids=devices_ids)
        print("Let's use %d/%d GPUs!" %
              (len(devices_ids), torch.cuda.device_count()))
    net.to(device)
    data_loader = DataLoader(dataset=data,
                             batch_size=batch_size,
                             shuffle=True,
                             num_workers=4,
                             pin_memory=True)
    arcFace = ArcFace(512, data.person).to(device)
    criterion = nn.CrossEntropyLoss().to(device)
    optimizer = optim.Adam([{
        'params': net.parameters()
    }, {
        'params': arcFace.parameters()
    }],
                           lr=learning_rate,
                           weight_decay=weight_decay)
    # optimizer = optim.SGD([{'params': net.parameters()},
    #                        {'params': arcFace.parameters()}],
    #                       lr=learning_rate, weight_decay=weight_decay,
    #                       momentum=momentum)
    scheduler = optim.lr_scheduler.MultiStepLR(optimizer,
                                               milestones=milestones,
                                               gamma=0.1,
Beispiel #5
0
    # Some Args setting
    net = Net()

    device = torch.device("cuda:0")
    if torch.cuda.device_count() > 1:
        devices_ids = [0]
        net = nn.DataParallel(net, device_ids=devices_ids)
        print("Let's use %d/%d GPUs!" %
              (len(devices_ids), torch.cuda.device_count()))
    net.to(device)
    data_loader = DataLoader(dataset=data,
                             batch_size=batch_size,
                             shuffle=True,
                             num_workers=4,
                             pin_memory=True)
    arcFace = ArcFace(640, data.type).to(device)
    # criterion = nn.CrossEntropyLoss(weight=torch.from_numpy(np.array([1, 7])).float()).to(device)
    criterion = nn.BCEWithLogitsLoss().to(device)
    optimizer = optim.Adam(
        [{
            'params': net.parameters()
        }],
        # {'params': arcFace.parameters()}],
        lr=learning_rate,
        weight_decay=weight_decay)
    # optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9)
    scheduler = optim.lr_scheduler.MultiStepLR(optimizer,
                                               milestones=[1000, 2000],
                                               gamma=0.1,
                                               last_epoch=-1)
    print(net.parameters())