Beispiel #1
0
def test_step(model, config, inputs, logger=None):
    """Reconstruction Test step during training."""
    outputs = inputs.clone().detach()

    with torch.no_grad():
        (preds, priors, posteriors), stored_vars = model(
            inputs,
            config,
            False,
        )

        # Accumulate preds and select targets
        targets = outputs[:, config['n_ctx']:]

        # Compute the reconstruction and prior loss
        loss_rec = losses.reconstruction_loss(config, preds, targets)
        if config['beta'] > 0:
            loss_prior = losses.kl_loss(config, priors, posteriors)
            loss = loss_rec + config['beta'] * loss_prior
        else:
            loss = loss_rec

    # Logs
    if logger is not None:
        logger.scalar('test_loss_rec', loss_rec.item())
        logger.scalar('test_loss', loss.item())
        if config['beta'] > 0:
            logger.scalar('test_loss_prior', loss_prior.item())
Beispiel #2
0
def train_step(model, config, inputs, optimizer, batch_idx, logger=None):
    """Training step for the model."""

    outputs = inputs.clone().detach()

    # Forward pass
    (preds, priors, posteriors), stored_vars = model(inputs, config, False)

    # Accumulate preds and select targets
    targets = outputs[:, config['n_ctx']:]

    # Compute the reconstruction loss
    loss_rec = losses.reconstruction_loss(config, preds, targets)

    # Compute the prior loss
    if config['beta'] > 0:
        loss_prior = losses.kl_loss(config, priors, posteriors)
        loss = loss_rec + config['beta'] * loss_prior
    else:
        loss_prior = 0.
        loss = loss_rec

    # Backward pass and optimizer step
    optimizer.zero_grad()
    if config['apex']:
        from apex import amp
        with amp.scale_loss(loss, optimizer) as scaled_loss:
            scaled_loss.backward()
    else:
        loss.backward()
    optimizer.step()

    # Logs
    if logger is not None:
        logger.scalar('train_loss_rec', loss_rec.item())
        logger.scalar('train_loss', loss.item())
        if config['beta'] > 0:
            logger.scalar('train_loss_prior', loss_prior.item())

    return preds, targets, priors, posteriors, loss_rec, loss_prior, loss, stored_vars
Beispiel #3
0
def train(model_dir,
          gpu_id,
          lr,
          n_iterations,
          alpha,
          image_sigma,
          model_save_iter,
          batch_size=1):
    """
    model training function
    :param model_dir: model folder to save to
    :param gpu_id: integer specifying the gpu to use
    :param lr: learning rate
    :param n_iterations: number of training iterations
    :param alpha: the alpha, the scalar in front of the smoothing laplacian, in MICCAI paper
    :param image_sigma: the image sigma in MICCAI paper
    :param model_save_iter: frequency with which to save models
    :param batch_size: Optional, default of 1. can be larger, depends on GPU memory and volume size
    """

    # prepare model folder
    if not os.path.isdir(model_dir):
        os.mkdir(model_dir)
    print(model_dir)

    # gpu handling
    gpu = '/gpu:' + str(gpu_id)
    os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.allow_soft_placement = True
    set_session(tf.Session(config=config))

    # Diffeomorphic network architecture used in MICCAI 2018 paper
    nf_enc = [16, 32, 32, 32]
    nf_dec = [32, 32, 32, 32, 16, 3]

    # prepare the model
    # in the CVPR layout, the model takes in [image_1, image_2] and outputs [warped_image_1, velocity_stats]
    # in the experiments, we use image_2 as atlas
    with tf.device(gpu):
        # miccai 2018 used xy indexing.
        model = networks.miccai2018_net(vol_size,
                                        nf_enc,
                                        nf_dec,
                                        use_miccai_int=True,
                                        indexing='xy')

        # compile
        model_losses = [losses.kl_l2loss(image_sigma), losses.kl_loss(alpha)]
        model.compile(optimizer=Adam(lr=lr), loss=model_losses)

        # save first iteration
        model.save(os.path.join(model_dir, str(0) + '.h5'))

    train_example_gen = datagenerators.example_gen(train_vol_names)
    zeros = np.zeros((1, *vol_size, 3))

    # train. Note: we use train_on_batch and design out own print function as this has enabled
    # faster development and debugging, but one could also use fit_generator and Keras callbacks.
    for step in range(1, n_iterations):

        # get_data
        X = next(train_example_gen)[0]

        # train
        with tf.device(gpu):
            train_loss = model.train_on_batch([X, atlas_vol],
                                              [atlas_vol, zeros])

        if not isinstance(train_loss, list):
            train_loss = [train_loss]

        # print
        print_loss(step, 0, train_loss)

        # save model
        with tf.device(gpu):
            if (step % model_save_iter == 0) or step < 10:
                model.save(os.path.join(model_dir, str(step) + '.h5'))
Beispiel #4
0
def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, scaler, loaders, logger, writers):
  net_g, net_d = nets
  optim_g, optim_d = optims
  scheduler_g, scheduler_d = schedulers
  train_loader, eval_loader = loaders
  if writers is not None:
    writer, writer_eval = writers

  train_loader.batch_sampler.set_epoch(epoch)
  global global_step

  net_g.train()
  net_d.train()
  for batch_idx, (spec, spec_lengths, y, y_lengths) in enumerate(train_loader):
    spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(rank, non_blocking=True)
    y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(rank, non_blocking=True)


    with autocast(enabled=hps.train.fp16_run):
      mel = spec_to_mel_torch(
          spec, 
          hps.data.filter_length, 
          hps.data.n_mel_channels, 
          hps.data.sampling_rate,
          hps.data.mel_fmin, 
          hps.data.mel_fmax)
#       print('check',mel.shape)/
      y_hat, ids_slice, x_mask, z_mask,\
      (z, z_p, m_p, logs_p, m_q, logs_q) = net_g(mel, spec_lengths, spec, spec_lengths)
#       print('check',log_det_j_sum.shape, m_p.shape)

      y_mel = commons.slice_segments(mel, ids_slice, hps.train.segment_size // hps.data.hop_length)
      y_hat_mel = mel_spectrogram_torch(
          y_hat.squeeze(1), 
          hps.data.filter_length, 
          hps.data.n_mel_channels, 
          hps.data.sampling_rate, 
          hps.data.hop_length, 
          hps.data.win_length, 
          hps.data.mel_fmin, 
          hps.data.mel_fmax
      )

      y = commons.slice_segments(y, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice 
      
      # NDA is effective?
      batch_size=y.size(0)
      y_jig1 = y.view(batch_size,4,-1)
      rand_idx = torch.randperm(4)
      y_jig2 = y_jig1[:,rand_idx,:]
      y_jigsaw = y_jig2.view(batch_size,1,-1)
#             print(rand_idx)
      check_idx = torch.tensor([0,1,2,3])
      if (rand_idx ==check_idx).sum()==4:
          y_jigsaw = y_hat
      else:
          y_jigsaw = y_jigsaw
    
      y_negative = 0.75*y_hat + 0.25*y_jigsaw
    
    
      # Discriminator
      y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_negative.detach())
    
    
    
      with autocast(enabled=False):
        loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
        loss_disc_all = loss_disc
    optim_d.zero_grad()
    scaler.scale(loss_disc_all).backward()
    scaler.unscale_(optim_d)
    grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
    scaler.step(optim_d)

    with autocast(enabled=hps.train.fp16_run):
      # Generator
      y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
      with autocast(enabled=False):
        loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel
        loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl

        loss_fm = feature_loss(fmap_r, fmap_g)
        loss_gen, losses_gen = generator_loss(y_d_hat_g)
        loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl
    optim_g.zero_grad()
    scaler.scale(loss_gen_all).backward()
    scaler.unscale_(optim_g)
    grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
    scaler.step(optim_g)
    scaler.update()

    if rank==0:
      if global_step % hps.train.log_interval == 0:
        lr = optim_g.param_groups[0]['lr']
        losses = [loss_disc, loss_gen, loss_fm, loss_mel, loss_kl]
        logger.info('Train Epoch: {} [{:.0f}%]'.format(
          epoch,
          100. * batch_idx / len(train_loader)))
        logger.info([x.item() for x in losses] + [global_step, lr])
        
        scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc_all, "learning_rate": lr, "grad_norm_d": grad_norm_d, "grad_norm_g": grad_norm_g}
        scalar_dict.update({"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl})

        scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
        scalar_dict.update({"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
        scalar_dict.update({"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
        image_dict = { 
            "slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
            "slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()), 
            "all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
        }
        utils.summarize(
          writer=writer,
          global_step=global_step, 
          images=image_dict,
          scalars=scalar_dict)

      if global_step % hps.train.eval_interval == 0:
        evaluate(hps, net_g, eval_loader, writer_eval)
        utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
        utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch, os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
    global_step += 1
  
  if rank == 0:
    logger.info('====> Epoch: {}'.format(epoch))