Beispiel #1
0
def main(argv):
    del argv  # Unused.
    line_format = ('--masks={masks} --output_dir={output_dir}')
    name = FLAGS.experiment

    for trial in range(1, 21):
        for level in range(0, 31):
            for run in range(1, 11):
                masks = paths.masks(constants.run(trial, level))
                output = constants.run(trial, level, name, run)
                result = line_format.format(masks=masks, output_dir=output)

                if FLAGS.experiment in ('reuse', 'reuse_sign'):
                    result += (' --initialization_distribution=' +
                               constants.initialization(level))

                if FLAGS.experiment == 'reuse_sign':
                    presets = paths.initial(constants.run(trial, level))
                    result += ' --same_sign={}'.format(presets)

                print(result)
Beispiel #2
0
def train(sess, dataset, model, optimizer_fn, training_len, output_dir,
          **params):
    """Train a model on a dataset.

  Training continues until training_len iterations or epochs have taken place.

  Args:
    sess: A tensorflow session
    dataset: The dataset on which to train (a child of dataset_base.DatasetBase)
    model: The model to train (a child of model_base.ModelBase)
    optimizer_fn: A function that, when called, returns an instance of an
      optimizer object to be used to optimize the network.
    training_len: A tuple whose first value is the unit of measure
      ("epochs" or "iterations") and whose second value is the number of
      units for which the network should be trained.
    output_dir: The directory to which any output should be saved.
    **params: Other parameters.
      save_summaries is whether to save summary data.
      save_network is whether to save the network before and after training.
      test_interval is None if the test set should not be evaluated; otherwise,
        frequency (in iterations) at which the test set should be run.
      validate_interval is analogous to test_interval.

  Returns:
      A dictionary containing the weights before training and the weights after
      training.
  """
    # Create initial session parameters.
    #optimize = optimizer_fn().minimize(model.loss)
    D_solver = (tf.train.AdamOptimizer(
        learning_rate=model.lr, beta1=0.5).minimize(model.D_loss,
                                                    var_list=model.theta_D))
    G_solver = (tf.train.AdamOptimizer(
        learning_rate=model.lr, beta1=0.5).minimize(model.G_loss,
                                                    var_list=model.theta_G))
    sess.run(tf.global_variables_initializer())
    initial_weights = model.get_current_weights(sess)

    train_handle = dataset.get_train_handle(sess)
    test_handle = dataset.get_test_handle(sess)
    validate_handle = dataset.get_validate_handle(sess)

    # Optional operations to perform before training.
    if params.get('save_summaries', False):
        writer = tf.summary.FileWriter(paths.summaries(output_dir))
        D_train_file = tf.gfile.GFile(paths.log(output_dir, 'D_train'), 'w')
        G_train_file = tf.gfile.GFile(paths.log(output_dir, 'G_train'), 'w')
        test_file = tf.gfile.GFile(paths.log(output_dir, 'test'), 'w')
        validate_file = tf.gfile.GFile(paths.log(output_dir, 'validate'), 'w')

    if params.get('save_network', False):
        save_restore.save_network(paths.initial(output_dir), initial_weights)
        save_restore.save_network(paths.masks(output_dir), model.masks)

    # Helper functions to collect and record summaries.
    def record_summaries(iteration, records, fp):
        """Records summaries obtained from evaluating the network.

    Args:
      iteration: The current training iteration as an integer.
      records: A list of records to be written.
      fp: A file to which the records should be logged in an easier-to-parse
        format than the tensorflow summary files.
    """
        if params.get('save_summaries', False):
            log = ['iteration', str(iteration)]
            for record in records:
                # Log to tensorflow summaries for tensorboard.
                writer.add_summary(record, iteration)

                # Log to text file for convenience.
                summary_proto = tf.Summary()
                summary_proto.ParseFromString(record)
                value = summary_proto.value[0]
                log += [value.tag, str(value.simple_value)]
            fp.write(','.join(log) + '\n')

    def collect_test_summaries(iteration):
        if (params.get('save_summaries', False) and 'test_interval' in params
                and iteration % params['test_interval'] == 0):
            sess.run(dataset.test_initializer)
            records = sess.run(model.test_summaries,
                               {dataset.handle: test_handle})
            record_summaries(iteration, records, test_file)

    def collect_validate_summaries(iteration):
        if (params.get('save_summaries', False)
                and 'validate_interval' in params
                and iteration % params['validate_interval'] == 0):
            sess.run(dataset.validate_initializer)
            records = sess.run(model.validate_summaries,
                               {dataset.handle: validate_handle})
            record_summaries(iteration, records, validate_file)

    # Train for the specified number of epochs. This behavior is encapsulated
    # in a function so that it is possible to break out of multiple loops
    # simultaneously.
    def training_loop():
        """The main training loop encapsulated in a function."""
        iteration = 0
        epoch = 0
        while True:
            sess.run(dataset.train_initializer)
            epoch += 1

            # End training if we have passed the epoch limit.
            if training_len[0] == 'epochs' and epoch > training_len[1]:
                return

            # One training epoch.
            while True:
                try:
                    iteration += 1
                    if iteration == 12500:
                        import pdb
                        pdb.set_trace()

                    # End training if we have passed the iteration limit.
                    if training_len[
                            0] == 'iterations' and iteration > training_len[1]:
                        return

                    # Train.
                    #records = sess.run([optimize] + model.train_summaries,
                    #                   {dataset.handle: train_handle})[1:]
                    # TODO: make batch size less ridiculously designed
                    D_records = sess.run(
                        [D_solver] + model.D_train_summaries, {
                            dataset.handle: train_handle,
                            model.z: ModelWgan.sample_z(32, model.z_dim)
                        })[1:]
                    G_records = sess.run(
                        [G_solver] + model.G_train_summaries, {
                            dataset.handle: train_handle,
                            model.z: ModelWgan.sample_z(32, model.z_dim)
                        })[1:]

                    record_summaries(iteration, D_records, D_train_file)
                    record_summaries(iteration, G_records, G_train_file)


#
#           # Collect test and validation data if applicable.
#           collect_test_summaries(iteration)
#           collect_validate_summaries(iteration)

# End of epoch handling.
                except tf.errors.OutOfRangeError:
                    break

    # Run the training loop.
    training_loop()

    # Clean up.
    if params.get('save_summaries', False):
        D_train_file.close()
        G_train_file.close()
        test_file.close()
        validate_file.close()

    # Retrieve the final weights of the model.
    final_weights = model.get_current_weights(sess)
    if params.get('save_network', False):
        save_restore.save_network(paths.final(output_dir), final_weights)

    return initial_weights, final_weights
Beispiel #3
0
    avg_printer.do_print(trial, '\tTest: {}', [second_last_test_acc])
    avg_printer.do_print(
        trial, '\t{:^20s}{:^20s}{:^20s}{:^20s}'.format('Nonempty', 'Rows',
                                                       'Columns', 'Weights'),
        ())
    if second_last_run == 0:
        # First runs don't have masks, so we have to use the initial weights to get the shapes of the layers
        weights_dir = paths.initial(second_last_path)
        for mask_name in sorted(os.listdir(weights_dir)):
            mask = np.load(os.path.join(weights_dir, mask_name))
            avg_printer.do_print(
                trial, '\t{:^20s}'.format(mask_name) +
                '{:>10.2f}/{:<10.2f}{:>10.2f}/{:<10.2f}{:>10.2f}/{:<10.2f}', [
                    mask.shape[0], mask.shape[0], mask.shape[1], mask.shape[1],
                    mask.shape[0] * mask.shape[1],
                    mask.shape[0] * mask.shape[1]
                ])
    else:
        masks_dir = paths.masks(second_last_path)
        for mask_name in sorted(os.listdir(masks_dir)):
            mask = np.load(os.path.join(masks_dir, mask_name))
            avg_printer.do_print(
                trial, '\t{:^20s}'.format(mask_name) +
                '{:>10.2f}/{:<10.2f}{:>10.2f}/{:<10.2f}{:>10.2f}/{:<10.2f}', [
                    np.sum(np.sum(mask, axis=1) > 0), mask.shape[0],
                    np.sum(np.sum(mask, axis=0) > 0), mask.shape[1],
                    np.sum(mask), mask.shape[0] * mask.shape[1]
                ])

avg_printer.flush()