Beispiel #1
0
class Predictor():
    """
        slim class to make predictions on trained model

        Args:
            model - your model (nn.Module)
            device - the device to send the inputs to
            callbacks - (optional) list of lpd.callbacks to apply during the predictions phases and states
                        callbacks will be executed by the order of the list 
            name - a friendly identifier

        Methods:
            from_trainer - for creating a new Predictor instance from given Trainer
            from_checkpoint - for creating a new Predictor instance from a saved Trainer checkpoint
            predict_sample - make prediction on single sample
            predict_batch - make prediction on single batch
            predict_data_loader - make prediction on data loader (DataLoader/Iterable/Generator)
    """
    def __init__(self, model, device, callbacks=None, name='lpd predictor'):
        self._inner = Trainer(model=model,
                              device=device,
                              loss_func=None,
                              optimizer=None,
                              scheduler=None,
                              metrics=None,
                              train_data_loader=None,
                              val_data_loader=None,
                              train_steps=0,
                              val_steps=0,
                              callbacks=callbacks,
                              name=name)

    @staticmethod
    def from_trainer(trainer):
        print(f'[Predictor] - Loading from trainer {trainer.name}')

        predictor = Predictor(model=trainer.model,
                              device=trainer.device,
                              callbacks=trainer.callbacks,
                              name=f'Predictor-for-Trainer-{trainer.name}')

        return predictor

    @staticmethod
    def from_checkpoint(dir_path, file_name, model, device):
        full_path = dir_path + file_name
        checkpoint = T.load(full_path, map_location=device)
        print(f'[Predictor] - Loading from {full_path}')
        model.load_state_dict(checkpoint['model'])

        callbacks = None
        if 'callbacks' in checkpoint:
            callbacks = checkpoint['callbacks']

        name = None
        if 'name' in checkpoint:
            name = checkpoint['name']

        predictor = Predictor(model=model,
                              device=device,
                              callbacks=callbacks,
                              name=name)

        return predictor

    def predict_sample(self, inputs):
        return self._inner.predict_sample(inputs)

    def predict_batch(self, inputs):
        return self._inner.predict_batch(inputs)

    def predict_data_loader(self, inputs_data_loader, steps):
        return self._inner.predict_data_loader(inputs_data_loader, steps)
Beispiel #2
0
    def test_save_and_predict(self):

        save_to_dir = os.path.dirname(__file__) + '/trainer_checkpoint/'
        checkpoint_file_name = 'checkpoint'
        trainer_file_name = 'trainer'

        device = tu.get_gpu_device_if_available()

        model = TestModel().to(device)

        loss_func = nn.BCEWithLogitsLoss().to(device)

        optimizer = optim.Adam(model.parameters(), lr=1e-4)

        scheduler = None

        metrics = BinaryAccuracyWithLogits(name='acc')

        callbacks = [
            LossOptimizerHandler(),
            ModelCheckPoint(checkpoint_dir=save_to_dir,
                            checkpoint_file_name=checkpoint_file_name,
                            callback_monitor=CallbackMonitor(
                                monitor_type=MonitorType.LOSS,
                                stats_type=StatsType.VAL,
                                monitor_mode=MonitorMode.MIN),
                            save_best_only=True,
                            save_full_trainer=False),
        ]

        data_loader = data_generator()
        data_loader_steps = 100
        num_epochs = 5

        trainer = Trainer(model=model,
                          device=device,
                          loss_func=loss_func,
                          optimizer=optimizer,
                          scheduler=scheduler,
                          metrics=metrics,
                          train_data_loader=data_loader,
                          val_data_loader=data_loader,
                          train_steps=data_loader_steps,
                          val_steps=data_loader_steps,
                          callbacks=callbacks,
                          name='Predictor-Trainer-Test')

        x1_x2, y = next(data_loader)
        _ = trainer.predict_batch(x1_x2)  # JUST TO CHECK THAT IT FUNCTIONS

        sample = [x1_x2[0][0], x1_x2[1][0]]

        # PREDICT BEFORE TRAIN
        sample_prediction_before_train = trainer.predict_sample(sample)

        trainer.train(num_epochs, verbose=0)

        # PREDICT AFTER TRAIN
        sample_prediction_from_trainer = trainer.predict_sample(sample)

        # SAVE THE TRAINER
        trainer.save_trainer(save_to_dir, trainer_file_name)

        #-----------------------------------------------#
        # CREATE PREDICTOR FROM CURRENT TRAINER
        #-----------------------------------------------#
        predictor_from_trainer = Predictor.from_trainer(trainer)

        # PREDICT FROM PREDICTOR
        sample_prediction_from_predictor = predictor_from_trainer.predict_sample(
            sample)

        self.assertFalse(
            (sample_prediction_before_train == sample_prediction_from_trainer
             ).all())
        self.assertTrue(
            (sample_prediction_from_predictor == sample_prediction_from_trainer
             ).all())

        #-----------------------------------------------#
        # LOAD MODEL CHECKPOINT AS NEW PREDICTOR
        #-----------------------------------------------#
        fresh_device = tu.get_gpu_device_if_available()
        fresh_model = TestModel().to(fresh_device)
        loaded_predictor = Predictor.from_checkpoint(
            save_to_dir, checkpoint_file_name + '_best_only', fresh_model,
            fresh_device)

        # PREDICT AFTER LOAD
        sample_prediction_from_loaded_predictor = loaded_predictor.predict_sample(
            sample)

        self.assertFalse(
            (sample_prediction_before_train == sample_prediction_from_trainer
             ).all())
        self.assertTrue((sample_prediction_from_loaded_predictor ==
                         sample_prediction_from_trainer).all())

        #-----------------------------------------------#
        # LOAD TRAINER CHECKPOINT AS NEW PREDICTOR
        #-----------------------------------------------#
        fresh_device = tu.get_gpu_device_if_available()
        fresh_model = TestModel().to(fresh_device)
        loaded_predictor = Predictor.from_checkpoint(save_to_dir,
                                                     trainer_file_name,
                                                     fresh_model, fresh_device)

        # PREDICT AFTER LOAD
        sample_prediction_from_loaded_predictor = loaded_predictor.predict_sample(
            sample)

        self.assertFalse(
            (sample_prediction_before_train == sample_prediction_from_trainer
             ).all())
        self.assertTrue((sample_prediction_from_loaded_predictor ==
                         sample_prediction_from_trainer).all())