def save(self, path): path = os.path.expanduser(path) os.makedirs(path, exist_ok=True) try: with open(os.path.join(path, "best_configure.json"), 'w') as f: json.dump(self.tune_cfg, f) logger.info("save config file of quantized model to path %s" % path) except IOError as e: logger.error("Unable to save configure file and weights. %s" % e)
def save(self, root=None): if not root: root = cfg.default_workspace root = os.path.abspath(os.path.expanduser(root)) os.makedirs(root, exist_ok=True) try: with open(os.path.join(root, "best_configure.json"), 'w') as f: json.dump(self.tune_cfg, f) logger.info("Save config file of quantized model at %s" % root) except IOError as e: logger.error("Unable to save configure file and weights. %s" % e)
def save(self, path): path = os.path.expanduser(path) os.makedirs(path, exist_ok=True) try: with open(os.path.join(path, "best_configure.yaml"), 'w') as f: yaml.dump(self.tune_cfg, f, default_flow_style=False) torch.save(self._model.state_dict(), os.path.join(path, "best_model_weights.pt")) logger.info( "save config file and weights of quantized model to path %s" % path) except IOError as e: logger.error("Unable to save configure file and weights. %s" % e)
def save(self, root=None): if not root: root = cfg.default_workspace root = os.path.abspath(os.path.expanduser(root)) os.makedirs(root, exist_ok=True) try: with open(os.path.join(root, "best_configure.yaml"), 'w') as f: yaml.dump(self.tune_cfg, f, default_flow_style=False) torch.save(self._model.state_dict(), os.path.join(root, "best_model_weights.pt")) logger.info( "Save config file and weights of quantized model at %s" % root) except IOError as e: logger.error("Unable to save configure file and weights. %s" % e)