Beispiel #1
0
 def test_migration_v1_to_v2(self) -> None:
     """Test Workloads List Migration from v1 to v2."""
     migrator = WorkloadsListMigrator()
     migrator.workloads_json = os.path.join(
         os.path.dirname(__file__),
         "files",
         "workloads_list_v1.json",
     )
     self.assertEqual(migrator.require_migration, True)
     migrator.migrate()
     self.assertEqual(migrator.require_migration, False)
     expected_json_path = os.path.join(
         os.path.dirname(__file__),
         "files",
         "workloads_list_v2.json",
     )
     expected = _load_json_as_dict(expected_json_path)
     self.assertEqual(type(migrator.workloads_data), dict)
     self.assertDictEqual(migrator.workloads_data, expected)  # type: ignore
Beispiel #2
0
    def test_workload_migration_from_v2(self) -> None:
        """Test Workload v2 config migrator."""
        workload_json_path = os.path.join(
            os.path.dirname(__file__),
            "files",
            "workload_v2_tuned.json",
        )
        workload_migrator = WorkloadMigrator(
            workload_json_path=workload_json_path, )
        workload_migrator.migrate()

        expected_json_path = os.path.join(
            os.path.dirname(__file__),
            "files",
            "workload_v2_tuned.json",
        )
        expected = _load_json_as_dict(expected_json_path)
        self.assertDictEqual(workload_migrator.workload_data,
                             expected)  # type: ignore
Beispiel #3
0
def execute_benchmark(data: Dict[str, Any]) -> None:
    """
    Execute benchmark.

    Expected data:
    {
        "id": "configuration_id",
        "workspace_path": "/path/to/workspace",
        "input_model": {
            "precision": "fp32",
            "path": "/localdisk/fp32.pb"
        },
        "optimized_model": {
            "precision": "int8",
            "path": "/localdisk/int8.pb"
        }
    }
    """
    from lpot.ux.utils.workload.workload import Workload

    request_id = str(data.get("id", ""))
    input_model = data.get("input_model", None)
    input_model.update({"model_type": "input_model"})

    optimized_model = data.get("optimized_model", None)
    optimized_model.update({"model_type": "optimized_model"})

    if not (request_id and input_model and optimized_model):
        message = "Missing request id, input or optimized model data."
        mq.post_error(
            "benchmark_finish",
            {"message": message, "code": 404, "id": request_id},
        )
        raise ClientErrorException(message)

    workdir = Workdir(request_id=request_id, overwrite=False)
    try:
        workload_path = workdir.workload_path
        workload_data = _load_json_as_dict(
            os.path.join(workload_path, "workload.json"),
        )
    except Exception as err:
        mq.post_error(
            "benchmark_finish",
            {"message": repr(err), "code": 404, "id": request_id},
        )
        raise ClientErrorException(repr(err))

    workload = Workload(workload_data)

    response_data: Dict[str, Any] = {"id": request_id, "execution_details": {}}

    mq.post_success(
        "benchmark_start",
        {
            "message": "started",
            "id": request_id,
        },
    )

    models = [input_model, optimized_model]

    benchmark_count = 0
    benchmark_total = 0

    for model_info in models:
        benchmark_modes: List[str] = model_info.get("mode", [Benchmarks.PERF])
        if (
            not workload.tune and Benchmarks.ACC not in benchmark_modes
        ):  # Accuracy information is provided only in tuning
            benchmark_modes.append(Benchmarks.ACC)
        model_info.update({"benchmark_modes": benchmark_modes})
        benchmark_total += len(benchmark_modes)

    for model_info in models:
        model_precision = model_info.get("precision", None)
        model_type = model_info.get("model_type", None)
        model_path = model_info.get("path", None)
        benchmark_modes = model_info.get("benchmark_modes", None)

        if not (model_precision and model_path and model_type and benchmark_modes):
            message = "Missing model precision, model path or model type."
            mq.post_error(
                "benchmark_finish",
                {"message": message, "code": 404, "id": request_id},
            )
            raise ClientErrorException(message)

        for benchmark_mode in benchmark_modes:
            benchmark_count += 1
            response_data = benchmark_model_and_respond_to_ui(
                response_data=response_data,
                workload=workload,
                workdir=workdir,
                model=model_type,
                model_path=model_path,
                model_precision=model_precision,
                benchmark_mode=benchmark_mode,
                benchmark_count=benchmark_count,
                benchmark_total=benchmark_total,
            )
Beispiel #4
0
def execute_optimization(data: Dict[str, Any]) -> dict:
    """Get configuration."""
    from lpot.ux.utils.workload.workload import Workload

    if not str(data.get("id", "")):
        message = "Missing request id."
        mq.post_error(
            "optimization_finish",
            {"message": message, "code": 404},
        )
        raise Exception(message)

    request_id: str = data["id"]
    workdir = Workdir(request_id=request_id, overwrite=False)
    workload_path: str = workdir.workload_path
    try:
        workload_data = _load_json_as_dict(
            os.path.join(workload_path, "workload.json"),
        )
    except Exception as err:
        mq.post_error(
            "optimization_finish",
            {"message": repr(err), "code": 404, "id": request_id},
        )
        raise err
    workload = Workload(workload_data)
    optimization: Optimization = OptimizationFactory.get_optimization(
        workload,
        workdir.template_path,
    )
    send_data = {
        "message": "started",
        "id": request_id,
        "size_input_model": get_size(optimization.input_graph),
    }
    workdir.clean_logs()
    workdir.update_data(
        request_id=request_id,
        model_path=optimization.input_graph,
        input_precision=optimization.input_precision,
        model_output_path=optimization.output_graph,
        output_precision=optimization.output_precision,
        status="wip",
    )

    executor = Executor(
        workspace_path=workload_path,
        subject="optimization",
        data=send_data,
        log_name="output",
    )

    proc = executor.call(
        optimization.command,
    )
    optimization_time = executor.process_duration
    if optimization_time:
        optimization_time = round(optimization_time, 2)
    log.debug(f"Elapsed time: {optimization_time}")
    logs = [os.path.join(workload_path, "output.txt")]
    parser = OptimizationParser(logs)
    if proc.is_ok:
        response_data = parser.process()

        if isinstance(response_data, dict):
            response_data["id"] = request_id
            response_data["optimization_time"] = optimization_time
            response_data["size_optimized_model"] = get_size(optimization.output_graph)
            response_data["model_output_path"] = optimization.output_graph
            response_data["size_input_model"] = get_size(optimization.input_graph)
            response_data["is_custom_dataloader"] = bool(workdir.template_path)

            workdir.update_data(
                request_id=request_id,
                model_path=optimization.input_graph,
                model_output_path=optimization.output_graph,
                metric=response_data,
                status="success",
                execution_details={"optimization": optimization.serialize()},
                input_precision=optimization.input_precision,
                output_precision=optimization.output_precision,
            )
            response_data["execution_details"] = {"optimization": optimization.serialize()}

        log.debug(f"Parsed data is {json.dumps(response_data)}")
        mq.post_success("optimization_finish", response_data)
        return response_data
    else:
        log.debug("FAIL")
        workdir.update_data(
            request_id=request_id,
            model_path=optimization.input_graph,
            input_precision=optimization.input_precision,
            output_precision=optimization.output_precision,
            status="error",
        )
        mq.post_failure("optimization_finish", {"message": "failed", "id": request_id})
        raise ClientErrorException("Optimization failed during execution.")
Beispiel #5
0
def execute_benchmark(data: Dict[str, Any]) -> None:
    """
    Execute benchmark.

    Expected data:
    {
        "id": "configuration_id",
        "workspace_path": "/path/to/workspace",
        "models": [
            {
                "precision": "fp32",
                "path": "/localdisk/fp32.pb"
            },
            {
                "precision": "int8",
                "path": "/localdisk/int8.pb"
            }
        ]
    }
    """
    from lpot.ux.utils.workload.workload import Workload

    request_id = str(data.get("id", ""))
    models = data.get("models", None)

    if not (request_id and models):
        message = "Missing request id or model list."
        mq.post_error(
            "benchmark_finish",
            {
                "message": message,
                "code": 404,
                "id": request_id
            },
        )
        raise ClientErrorException(message)

    workdir = Workdir(request_id=request_id, overwrite=False)
    try:
        workload_path = workdir.workload_path
        workload_data = _load_json_as_dict(
            os.path.join(workload_path, "workload.json"), )
    except Exception as err:
        mq.post_error(
            "benchmark_finish",
            {
                "message": repr(err),
                "code": 404,
                "id": request_id
            },
        )
        raise ClientErrorException(repr(err))

    workload = Workload(workload_data)

    response_data: Dict[str, Any] = {"id": request_id, "execution_details": {}}

    mq.post_success(
        "benchmark_start",
        {
            "message": "started",
            "id": request_id,
        },
    )

    for idx, model_info in enumerate(models, start=1):
        model_precision = model_info.get("precision", None)
        model_path = model_info.get("path", None)
        benchmark_mode = model_info.get("mode", "performance")
        if not (model_precision and model_path):
            message = "Missing model precision or model path."
            mq.post_error(
                "benchmark_finish",
                {
                    "message": message,
                    "code": 404,
                    "id": request_id
                },
            )
            raise ClientErrorException(message)

        benchmark: Benchmark = Benchmark(
            workload=workload,
            model_path=model_path,
            datatype=model_precision,
            mode=benchmark_mode,
        )

        log_name = f"{model_precision}_{benchmark_mode}_benchmark"

        executor = Executor(
            workload_path,
            subject="benchmark",
            data={"id": request_id},
            send_response=False,
            log_name=log_name,
            additional_log_names=["output.txt"],
        )

        proc = executor.call(benchmark.command, )

        logs = [os.path.join(workload_path, f"{log_name}.txt")]

        if proc.is_ok:
            parser = BenchmarkParser(logs)
            metrics = parser.process()
            metric = {}
            execution_details: Dict[str, Any] = {}
            throughput_field = f"perf_throughput_{model_precision}"
            if isinstance(metrics, dict):
                metric = {throughput_field: metrics.get(throughput_field, "")}
                execution_details = {
                    f"{model_precision}_benchmark": benchmark.serialize(),
                }
                response_data.update({"progress": f"{idx}/{len(models)}"})
                response_data.update(metric)
                response_data["execution_details"].update(execution_details)
            workdir.update_metrics(
                request_id=request_id,
                metric_data=metric,
            )
            workdir.update_execution_details(
                request_id=request_id,
                execution_details=execution_details,
            )
            log.debug(f"Parsed data is {json.dumps(response_data)}")
            mq.post_success("benchmark_progress", response_data)
        else:
            log.error("Benchmark failed.")
            mq.post_failure("benchmark_finish", {
                "message": "failed",
                "id": request_id
            })
            raise ClientErrorException("Benchmark failed during execution.")

    mq.post_success("benchmark_finish", response_data)