Beispiel #1
0
    def test_quantization_saved(self):
        from lpot.utils.pytorch import load

        model = copy.deepcopy(self.model)

        for fake_yaml in ['qat_yaml.yaml', 'ptq_yaml.yaml']:
            if fake_yaml == 'ptq_yaml.yaml':
                model.eval().fuse_model()
            quantizer = Quantization(fake_yaml)
            dataset = quantizer.dataset('dummy', (100, 3, 256, 256),
                                        label=True)
            quantizer.model = common.Model(model)
            quantizer.calib_dataloader = common.DataLoader(dataset)
            quantizer.eval_dataloader = common.DataLoader(dataset)
            if fake_yaml == 'qat_yaml.yaml':
                quantizer.q_func = q_func
            q_model = quantizer()
            q_model.save('./saved')
            # Load configure and weights by lpot.utils
            saved_model = load("./saved", model)
            eval_func(saved_model)
        from lpot import Benchmark
        evaluator = Benchmark('ptq_yaml.yaml')
        # Load configure and weights by lpot.model
        evaluator.model = common.Model(model)
        evaluator.b_dataloader = common.DataLoader(dataset)
        results = evaluator()
        evaluator.model = common.Model(model)
        fp32_results = evaluator()
        self.assertTrue(
            (fp32_results['accuracy'][0] - results['accuracy'][0]) < 0.01)
Beispiel #2
0
 def test_tuning_ipex(self):
     from lpot import Quantization
     model = torchvision.models.resnet18()
     model = MODELS['pytorch_ipex'](model)
     quantizer = Quantization('ipex_yaml.yaml')
     dataset = quantizer.dataset('dummy', (100, 3, 256, 256), label=True)
     quantizer.model = common.Model(model)
     quantizer.calib_dataloader = common.DataLoader(dataset)
     quantizer.eval_dataloader = common.DataLoader(dataset)
     lpot_model = quantizer()
     lpot_model.save("./saved")
     new_model = MODELS['pytorch_ipex'](model.model, {
         "workspace_path": "./saved"
     })
     new_model.model.to(ipex.DEVICE)
     try:
         script_model = torch.jit.script(new_model.model)
     except:
         script_model = torch.jit.trace(
             new_model.model,
             torch.randn(10, 3, 224, 224).to(ipex.DEVICE))
     from lpot import Benchmark
     evaluator = Benchmark('ipex_yaml.yaml')
     evaluator.model = common.Model(script_model)
     evaluator.b_dataloader = common.DataLoader(dataset)
     results = evaluator()
Beispiel #3
0
    def test_register_metric_postprocess(self):
        import PIL.Image
        image = np.array(PIL.Image.open(self.image_path))
        resize_image = np.resize(image, (224, 224, 3))
        mean = [123.68, 116.78, 103.94]
        resize_image = resize_image - mean
        images = np.expand_dims(resize_image, axis=0)
        labels = [768]
        from lpot import Benchmark, Quantization, common
        from lpot.data.transforms.imagenet_transform import LabelShift
        from lpot.metric.metric import TensorflowTopK

        evaluator = Benchmark('fake_yaml.yaml')
        evaluator.postprocess = common.Postprocess(LabelShift,
                                                   'label_benchmark',
                                                   label_shift=1)
        evaluator.metric = common.Metric(TensorflowTopK, 'topk_benchmark')
        evaluator.b_dataloader = common.DataLoader(
            dataset=list(zip(images, labels)))
        evaluator.model = self.pb_path
        result = evaluator()
        acc, batch_size, result_list = result['accuracy']
        self.assertEqual(acc, 0.0)

        quantizer = Quantization('fake_yaml.yaml')
        quantizer.postprocess = common.Postprocess(LabelShift,
                                                   'label_quantize',
                                                   label_shift=1)
        quantizer.metric = common.Metric(TensorflowTopK, 'topk_quantize')

        evaluator = Benchmark('fake_yaml.yaml')
        evaluator.metric = common.Metric(TensorflowTopK, 'topk_second')

        evaluator.b_dataloader = common.DataLoader(
            dataset=list(zip(images, labels)))
        evaluator.model = self.pb_path
        result = evaluator()
        acc, batch_size, result_list = result['accuracy']
        self.assertEqual(acc, 0.0)
Beispiel #4
0
def main(_):
  arg_parser = ArgumentParser(description='Parse args')

  arg_parser.add_argument("--input-graph",
                          help='Specify the slim model',
                          dest='input_graph')

  arg_parser.add_argument("--output-graph",
                          help='Specify tune result model save dir',
                          dest='output_graph')

  arg_parser.add_argument("--config", default=None, help="tuning config")

  arg_parser.add_argument('--benchmark', dest='benchmark', action='store_true', help='run benchmark')

  arg_parser.add_argument('--tune', dest='tune', action='store_true', help='use lpot to tune.')

  args = arg_parser.parse_args()

  factory = TFSlimNetsFactory()
  # user specific model can register to slim net factory
  input_shape = [None, 299, 299, 3]
  factory.register('inception_v4', inception_v4, input_shape, inception_v4_arg_scope)

  if args.tune:

      from lpot import Quantization
      quantizer = Quantization(args.config)
      quantizer.model = args.input_graph
      q_model = quantizer()
      q_model.save(args.output_graph)

  if args.benchmark:
      from lpot import Benchmark
      evaluator = Benchmark(args.config)
      evaluator.model = args.input_graph
      results = evaluator()
      for mode, result in results.items():
          acc, batch_size, result_list = result
          latency = np.array(result_list).mean() / batch_size

          print('\n{} mode benchmark result:'.format(mode))
          print('Accuracy is {:.3f}'.format(acc))
          print('Batch size = {}'.format(batch_size))
          print('Latency: {:.3f} ms'.format(latency * 1000))
          print('Throughput: {:.3f} images/sec'.format(1./ latency))
Beispiel #5
0
def benchmark_model(
    input_graph: str,
    config: str,
    benchmark_mode: str,
    framework: str,
    datatype: str = "",
) -> List[Dict[str, Any]]:
    """Execute benchmark."""
    from lpot import Benchmark, common

    benchmark_results = []

    if framework == "onnxrt":
        import onnx

        input_graph = onnx.load(input_graph)

    evaluator = Benchmark(config)
    evaluator.model = common.Model(input_graph)
    results = evaluator()
    for mode, result in results.items():
        if benchmark_mode == mode:
            log.info(f"Mode: {mode}")
            acc, batch_size, result_list = result
            latency = (sum(result_list) / len(result_list)) / batch_size
            log.info(f"Batch size: {batch_size}")
            if mode == "accuracy":
                log.info(f"Accuracy: {acc:.3f}")
            elif mode == "performance":
                log.info(f"Latency: {latency * 1000:.3f} ms")
                log.info(f"Throughput: {1. / latency:.3f} images/sec")

            benchmark_results.append(
                {
                    "precision": datatype,
                    "mode": mode,
                    "batch_size": batch_size,
                    "accuracy": acc,
                    "latency": latency * 1000,
                    "throughput": 1.0 / latency,
                },
            )
    return benchmark_results
Beispiel #6
0
def main():

    import lpot
    from lpot import common
    quantizer = lpot.Quantization('./conf.yaml')
    quantizer.model = common.Model("./mobilenet_v1_1.0_224_frozen.pb")
    quantized_model = quantizer()

     # Optional, run benchmark 
    from lpot import Benchmark
    evaluator = Benchmark('./conf.yaml')
    evaluator.model = common.Model(quantized_model)
    results = evaluator()
    batch_size = 1
    for mode, result in results.items():
       acc, batch_size, result_list = result
       latency = np.array(result_list).mean() / batch_size

       print('Accuracy is {:.3f}'.format(acc))
       print('Latency: {:.3f} ms'.format(latency * 1000))
Beispiel #7
0
def main(_):
    tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.INFO)

    if FLAGS.mode == 'benchmark':
        from lpot import Benchmark
        evaluator = Benchmark(FLAGS.config)
        evaluator.model = FLAGS.input_model
        results = evaluator()
        for mode, result in results.items():
            acc, batch_size, result_list = result
            latency = np.array(result_list).mean() / batch_size
            print('\n{} mode benchmark result:'.format(mode))
            print('Accuracy is {:.3f}'.format(acc))
            print('Batch size = {}'.format(batch_size))
            print('Latency: {:.3f} ms'.format(latency * 1000))
            print('Throughput: {:.3f} images/sec'.format(1./ latency))
    elif FLAGS.mode == 'tune':
        from lpot.quantization import Quantization
        quantizer = Quantization(FLAGS.config)
        quantizer.model = FLAGS.input_model
        q_model = quantizer()
        q_model.save(FLAGS.output_model)
Beispiel #8
0
    def run(self):
        if self.args.tune:
            from lpot import Quantization
            quantizer = Quantization(self.args.config)
            quantizer.model = self.args.input_graph
            q_model = quantizer()
            q_model.save(self.args.output_model)

        if self.args.benchmark:
            from lpot import Benchmark
            evaluator = Benchmark(self.args.config)
            evaluator.model = self.args.input_graph
            results = evaluator()
            for mode, result in results.items():
                acc, batch_size, result_list = result
                latency = np.array(result_list).mean() / batch_size

                print('\n{} mode benchmark result:'.format(mode))
                print('Accuracy is {:.3f}'.format(acc))
                print('Batch size = {}'.format(batch_size))
                print('Latency: {:.3f} ms'.format(latency * 1000))
                print('Throughput: {:.3f} images/sec'.format(1. / latency))
Beispiel #9
0
    parser.add_argument(
        '--tune',
        action='store_true', \
        default=False,
        help="whether quantize the model"
    )
    parser.add_argument('--config', type=str, help="config yaml path")
    parser.add_argument('--output_model', type=str, help="output model path")

    args = parser.parse_args()

    model = onnx.load(args.model_path)
    if args.benchmark:
        from lpot import Benchmark, common
        evaluator = Benchmark(args.config)
        evaluator.model = common.Model(model)
        results = evaluator()
        for mode, result in results.items():
            acc, batch_size, result_list = result
            latency = np.array(result_list).mean() / batch_size

            print('\n{} mode benchmark result:'.format(mode))
            print('Accuracy is {:.3f}'.format(acc))
            print('Batch size = {}'.format(batch_size))
            print('Latency: {:.3f} ms'.format(latency * 1000))
            print('Throughput: {:.3f} images/sec'.format(batch_size * 1. /
                                                         latency))

    if args.tune:
        from lpot import Quantization, common