Beispiel #1
0
    def test_bootstrap_lsqfit(self):
        fitter = MultiFitter(models=self.make_models(ncg=1))
        fit = fitter.lsqfit(data=self.data, prior=self.prior)
        datalist = gv.bootstrap_iter(self.data, n=10)
        ds = gv.dataset.Dataset()
        for bf in fit.bootstrapped_fit_iter(datalist=datalist):
            ds.append(bf.pmean)
        p = gv.dataset.avg_data(ds, bstrap=True)
        self.assertTrue(abs(p['a'].mean - 1.) < 5 * p['a'].sdev)
        self.assertTrue(abs(p['b'].mean - 0.5) < 5 * p['b'].sdev)
        self.assertEqual(ds.samplesize, 10)

        pdatalist = (fitter.process_data(d, fitter.models)
                     for d in gv.bootstrap_iter(self.data, n=10))
        ds = gv.dataset.Dataset()
        for bf in fit.bootstrapped_fit_iter(pdatalist=pdatalist):
            ds.append(bf.pmean)
        p = gv.dataset.avg_data(ds, bstrap=True)
        self.assertTrue(abs(p['a'].mean - 1.) < 5 * p['a'].sdev)
        self.assertTrue(abs(p['b'].mean - 0.5) < 5 * p['b'].sdev)
        self.assertEqual(ds.samplesize, 10)

        ds = gv.dataset.Dataset()
        for bf in fit.bootstrapped_fit_iter(n=10):
            ds.append(bf.pmean)
        p = gv.dataset.avg_data(ds, bstrap=True)
        self.assertTrue(abs(p['a'].mean - 1.) < 5 * p['a'].sdev)
        self.assertTrue(abs(p['b'].mean - 0.5) < 5 * p['b'].sdev)
        self.assertEqual(ds.samplesize, 10)
Beispiel #2
0
    def test_process_data(self):
        data = gv.BufferDict()
        data['l'] = ['1.0(3)', '2.0(4)', '3.0(3)', '4.0(4)']
        data['c1'] = ['1.0(3)', '2.0(4)', '3.0(3)', '4.0(4)']
        data['c2'] = ['1.0(3)', '2.0(4)', '3.0(3)', '4.0(4)']
        data['dummy'] = ['10(10)']
        data = gv.gvar(data)

        models = self.make_models(ncg=1)
        pdata = MultiFitter.process_data(data, models)
        self.assertTrue('dummy' not in pdata)
        for tag in pdata:
            self.assertEqual(str(pdata[tag]), str(data[tag]))

        models = self.make_models(ncg=2)
        pdata = MultiFitter.process_data(data, models)
        self.assertTrue('dummy' not in pdata)
        for tag in pdata:
            cgdata = np.sum([data[tag][:2], data[tag][2:]], axis=1) / 2.
            self.assertEqual(str(pdata[tag]), str(cgdata))
Beispiel #3
0
 def test_lsqfit_pdata_coarse_grain(self):
     " MultiFitter.lsqfit(pdata=..., ..., ncg=2) "
     fitter = MultiFitter(models=self.make_models(ncg=2))
     pdata = MultiFitter.process_data(data=self.data, models=fitter.models)
     fit3 = fitter.lsqfit(pdata=pdata, prior=self.prior)
     self.assertTrue(self.agree_ref(fit3.p))
Beispiel #4
0
 def test_lsqfit_pdata_coarse_grain(self):
     " MultiFitter.lsqfit(pdata=..., ..., ncg=2) "
     fitter = MultiFitter(models=self.make_models(ncg=2))
     pdata = MultiFitter.process_data(data=self.data, models=fitter.models)
     fit3 = fitter.lsqfit(pdata=pdata, prior=self.prior)
     self.assertEqual(str(fit3.p), "{'a': 0.99937(46),'b': 0.49994(78)}")