def test_pixelCoords(self):
        """
        Verify that pixelCoordsFromRaDecLSST has not changed
        """
        pix_x, pix_y = pixelCoordsFromRaDec(self.pix_data['ra'],
                                            self.pix_data['dec'],
                                            obs_metadata=self.obs,
                                            camera=self.camera)

        np.testing.assert_array_almost_equal(pix_x, self.pix_data['pixel_x'],
                                             decimal=3)
        np.testing.assert_array_almost_equal(pix_y, self.pix_data['pixel_y'],
                                             decimal=3)
    def test_pixelCoords(self):
        """
        Verify that pixelCoordsFromRaDecLSST has not changed
        """
        pix_x, pix_y = pixelCoordsFromRaDec(self.pix_data['ra'],
                                            self.pix_data['dec'],
                                            obs_metadata=self.obs,
                                            camera=self.camera)

        np.testing.assert_array_almost_equal(pix_x,
                                             self.pix_data['pixel_x'],
                                             decimal=3)
        np.testing.assert_array_almost_equal(pix_y,
                                             self.pix_data['pixel_y'],
                                             decimal=3)
    def testObjectPlacement(self):
        """
        Test that GalSim places objects on the correct pixel by drawing
        images containing single objects and no background, reading those
        images back in, and comparing the flux-averaged centroids of the
        images with the expected pixel positions of the input objects.
        """
        scratchDir = tempfile.mkdtemp(dir=ROOT, prefix='testLSSTObjectPlacement-')
        if os.path.exists(scratchDir):
            shutil.rmtree(scratchDir)
        os.mkdir(scratchDir)

        detector = lsst_camera()['R:0,3 S:2,2']
        det_name = 'R03_S22'

        magNorm = 19.0

        pixel_transformer = DMtoCameraPixelTransformer()

        for band in 'ugrizy':
            obs = self.obs_dict[band]

            catName = os.path.join(scratchDir, 'placementCatalog.dat')
            imageRoot = os.path.join(scratchDir, 'placementImage')
            dbFileName = os.path.join(scratchDir, 'placementInputCatalog.dat')


            imageName = '%s_%s_%s.fits' % (imageRoot, det_name, obs.bandpass)

            ra_c, dec_c = raDecFromPixelCoordsLSST(2000.0, 2000.0,
                                                   detector.getName(),
                                                   band=obs.bandpass,
                                                   obs_metadata=obs)

            nSamples = 30
            rng = np.random.RandomState(42)
            fwhm = 0.12

            for iteration in range(nSamples):
                if os.path.exists(dbFileName):
                    os.unlink(dbFileName)

                ra_obj = ra_c + rng.random_sample()*0.2 - 0.1
                dec_obj = dec_c + rng.random_sample()*0.2 - 0.1

                dmx_wrong, dmy_wrong = pixelCoordsFromRaDec(ra_obj, dec_obj,
                                                            chipName=detector.getName(),
                                                            obs_metadata=obs,
                                                            camera=lsst_camera())

                dmx_pix, dmy_pix = pixelCoordsFromRaDecLSST(ra_obj, dec_obj,
                                                            chipName=detector.getName(),
                                                            obs_metadata=obs,
                                                            band=obs.bandpass)

                x_pix, y_pix = pixel_transformer.cameraPixFromDMPix(dmx_pix, dmy_pix,
                                                                    detector.getName())

                x_pix_wrong, y_pix_wrong = pixel_transformer.cameraPixFromDMPix(dmx_wrong, dmy_wrong,
                                                                                detector.getName())

                d_ra = 360.0*(ra_obj - obs.pointingRA)  # in arcseconds
                d_dec = 360.0*(dec_obj - obs.pointingDec)

                create_text_catalog(obs, dbFileName,
                                    np.array([d_ra]), np.array([d_dec]),
                                    mag_norm=[magNorm])

                db = LSSTPlacementFileDBObj(dbFileName, runtable='test')
                cat = LSSTPlacementCatalog(db, obs_metadata=obs)
                cat.camera_wrapper = LSSTCameraWrapper()
                psf = SNRdocumentPSF(fwhm=fwhm)
                cat.setPSF(psf)

                cat.write_catalog(catName)
                cat.write_images(nameRoot=imageRoot)

                im = afwImage.ImageF(imageName).getArray()
                tot_flux = im.sum()
                self.assertGreater(tot_flux, 10.0)

                y_centroid = sum([ii*im[ii,:].sum() for ii in range(im.shape[0])])/tot_flux
                x_centroid = sum([ii*im[:,ii].sum() for ii in range(im.shape[1])])/tot_flux
                dd = np.sqrt((x_pix-x_centroid)**2 + (y_pix-y_centroid)**2)
                self.assertLess(dd, 0.5*fwhm)

                dd_wrong = np.sqrt((x_pix_wrong-x_centroid)**2 +
                                   (y_pix_wrong-y_centroid)**2)

                self.assertLess(dd, dd_wrong)

                if os.path.exists(dbFileName):
                    os.unlink(dbFileName)
                if os.path.exists(catName):
                    os.unlink(catName)
                if os.path.exists(imageName):
                    os.unlink(imageName)

        if os.path.exists(scratchDir):
            shutil.rmtree(scratchDir)
Beispiel #4
0
    def pixelCoordsFromRaDec(self,
                             ra,
                             dec,
                             pm_ra=None,
                             pm_dec=None,
                             parallax=None,
                             v_rad=None,
                             obs_metadata=None,
                             chipName=None,
                             camera=None,
                             epoch=2000.0,
                             includeDistortion=True):
        """
        Get the pixel positions (or nan if not on a chip) for objects based
        on their RA, and Dec (in degrees)

        Parameters
        ----------
        ra is in degrees in the International Celestial Reference System.
        Can be either a float or a numpy array.

        dec is in degrees in the International Celestial Reference System.
        Can be either a float or a numpy array.

        pm_ra is proper motion in RA multiplied by cos(Dec) (arcsec/yr)
        Can be a numpy array or a number or None (default=None).

        pm_dec is proper motion in dec (arcsec/yr)
        Can be a numpy array or a number or None (default=None).

        parallax is parallax in arcsec
        Can be a numpy array or a number or None (default=None).

        v_rad is radial velocity (km/s)
        Can be a numpy array or a number or None (default=None).

        obs_metadata is an ObservationMetaData characterizing the telescope
        pointing.

        epoch is the epoch in Julian years of the equinox against which
        RA is measured.  Default is 2000.

        chipName designates the names of the chips on which the pixel
        coordinates will be reckoned.  Can be either single value, an array, or None.
        If an array, there must be as many chipNames as there are (RA, Dec) pairs.
        If a single value, all of the pixel coordinates will be reckoned on the same
        chip.  If None, this method will calculate which chip each(RA, Dec) pair actually
        falls on, and return pixel coordinates for each (RA, Dec) pair on the appropriate
        chip.  Default is None.

        includeDistortion is a boolean.  If True (default), then this method will
        return the true pixel coordinates with optical distortion included.  If False, this
        method will return TAN_PIXEL coordinates, which are the pixel coordinates with
        estimated optical distortion removed.  See the documentation in afw.cameraGeom for more
        details.

        Returns
        -------
        a 2-D numpy array in which the first row is the x pixel coordinate
        and the second row is the y pixel coordinate
        """

        return coordUtils.pixelCoordsFromRaDec(
            ra,
            dec,
            pm_ra=pm_ra,
            pm_dec=pm_dec,
            parallax=parallax,
            v_rad=v_rad,
            obs_metadata=obs_metadata,
            chipName=chipName,
            camera=self._camera,
            epoch=epoch,
            includeDistortion=includeDistortion)
    def test_pixel_coords_from_ra_dec_degrees(self):
        """
        Test that pixelCoordsFromRaDec and pixelCoordsFromRaDecLSST agree
        """
        raP = 74.2
        decP = 13.0
        obs = ObservationMetaData(pointingRA=raP,
                                  pointingDec=decP,
                                  rotSkyPos=13.0,
                                  mjd=43441.0)

        n_obj = 1000
        rng = np.random.RandomState(83241)
        rr = rng.random_sample(n_obj) * 1.75
        theta = rng.random_sample(n_obj) * 2.0 * np.pi
        ra_list = raP + rr * np.cos(theta)
        dec_list = decP + rr * np.sin(theta)
        x_pix, y_pix = pixelCoordsFromRaDec(ra_list,
                                            dec_list,
                                            obs_metadata=obs,
                                            camera=self.camera)
        self.assertLessEqual(len(np.where(np.isnan(x_pix))[0]), n_obj / 10)
        self.assertLessEqual(len(np.where(np.isnan(y_pix))[0]), n_obj / 10)

        x_pix_test, y_pix_test = pixelCoordsFromRaDecLSST(ra_list,
                                                          dec_list,
                                                          obs_metadata=obs)
        np.testing.assert_array_equal(x_pix, x_pix_test)
        np.testing.assert_array_equal(y_pix, y_pix_test)

        # test when we force a chipName
        x_pix, y_pix = pixelCoordsFromRaDec(ra_list,
                                            dec_list,
                                            chipName=['R:2,2 S:1,1'],
                                            obs_metadata=obs,
                                            camera=self.camera)
        self.assertLessEqual(len(np.where(np.isnan(x_pix))[0]), n_obj / 10)
        self.assertLessEqual(len(np.where(np.isnan(y_pix))[0]), n_obj / 10)

        x_pix_test, y_pix_test = pixelCoordsFromRaDecLSST(
            ra_list, dec_list, chipName=['R:2,2 S:1,1'], obs_metadata=obs)
        np.testing.assert_array_equal(x_pix, x_pix_test)
        np.testing.assert_array_equal(y_pix, y_pix_test)

        # test without distortion
        x_pix, y_pix = pixelCoordsFromRaDec(ra_list,
                                            dec_list,
                                            obs_metadata=obs,
                                            camera=self.camera,
                                            includeDistortion=False)
        self.assertLessEqual(len(np.where(np.isnan(x_pix))[0]), n_obj / 10)
        self.assertLessEqual(len(np.where(np.isnan(y_pix))[0]), n_obj / 10)

        x_pix_test, y_pix_test = pixelCoordsFromRaDecLSST(
            ra_list, dec_list, obs_metadata=obs, includeDistortion=False)
        np.testing.assert_array_equal(x_pix, x_pix_test)
        np.testing.assert_array_equal(y_pix, y_pix_test)

        # test that exceptions are raised when incomplete ObservationMetaData are used
        obs = ObservationMetaData(pointingRA=raP,
                                  pointingDec=decP,
                                  mjd=59580.0)
        with self.assertRaises(RuntimeError) as context:
            pixelCoordsFromRaDecLSST(ra_list, dec_list, obs_metadata=obs)
        self.assertIn("rotSkyPos", context.exception.args[0])

        obs = ObservationMetaData(pointingRA=raP,
                                  pointingDec=decP,
                                  rotSkyPos=35.0)
        with self.assertRaises(RuntimeError) as context:
            pixelCoordsFromRaDecLSST(ra_list, dec_list, obs_metadata=obs)
        self.assertIn("mjd", context.exception.args[0])

        with self.assertRaises(RuntimeError) as context:
            pixelCoordsFromRaDecLSST(ra_list, dec_list)
        self.assertIn("ObservationMetaData", context.exception.args[0])

        # check that exceptions are raised when ra_list, dec_list are of the wrong shape
        obs = ObservationMetaData(pointingRA=raP,
                                  pointingDec=decP,
                                  rotSkyPos=24.0,
                                  mjd=43000.0)
        with self.assertRaises(RuntimeError) as context:
            pixelCoordsFromRaDecLSST(ra_list, dec_list[:5], obs_metadata=obs)
        self.assertIn("pixelCoordsFromRaDecLSST", context.exception.args[0])
    def test_alert_data_generation(self):

        dmag_cutoff = 0.005
        mag_name_to_int = {'u': 0, 'g': 1, 'r': 2, 'i': 3, 'z' : 4, 'y': 5}

        _max_var_param_str = self.max_str_len

        class StarAlertTestDBObj(StellarAlertDBObjMixin, CatalogDBObject):
            objid = 'star_alert'
            tableid = 'stars'
            idColKey = 'simobjid'
            raColName = 'ra'
            decColName = 'dec'
            objectTypeId = 0
            columns = [('raJ2000', 'ra*0.01745329252'),
                       ('decJ2000', 'dec*0.01745329252'),
                       ('parallax', 'px*0.01745329252/3600.0'),
                       ('properMotionRa', 'pmra*0.01745329252/3600.0'),
                       ('properMotionDec', 'pmdec*0.01745329252/3600.0'),
                       ('radialVelocity', 'vrad'),
                       ('variabilityParameters', 'varParamStr', str, _max_var_param_str)]

        class TestAlertsVarCatMixin(object):

            @register_method('alert_test')
            def applyAlertTest(self, valid_dexes, params, expmjd, variability_cache=None):
                if len(params) == 0:
                    return np.array([[], [], [], [], [], []])

                if isinstance(expmjd, numbers.Number):
                    dmags_out = np.zeros((6, self.num_variable_obj(params)))
                else:
                    dmags_out = np.zeros((6, self.num_variable_obj(params), len(expmjd)))

                for i_star in range(self.num_variable_obj(params)):
                    if params['amp'][i_star] is not None:
                        dmags = params['amp'][i_star]*np.cos(params['per'][i_star]*expmjd)
                        for i_filter in range(6):
                            dmags_out[i_filter][i_star] = dmags

                return dmags_out

        class TestAlertsVarCat(TestAlertsVarCatMixin, AlertStellarVariabilityCatalog):
            pass

        class TestAlertsTruthCat(TestAlertsVarCatMixin, CameraCoords, AstrometryStars,
                                 Variability, InstanceCatalog):
            column_outputs = ['uniqueId', 'chipName', 'dmagAlert', 'magAlert']

            camera = obs_lsst_phosim.PhosimMapper().camera

            @compound('delta_umag', 'delta_gmag', 'delta_rmag',
                      'delta_imag', 'delta_zmag', 'delta_ymag')
            def get_TruthVariability(self):
                return self.applyVariability(self.column_by_name('varParamStr'))

            @cached
            def get_dmagAlert(self):
                return self.column_by_name('delta_%smag' % self.obs_metadata.bandpass)

            @cached
            def get_magAlert(self):
                return self.column_by_name('%smag' % self.obs_metadata.bandpass) + \
                       self.column_by_name('dmagAlert')

        star_db = StarAlertTestDBObj(database=self.star_db_name, driver='sqlite')

        # assemble the true light curves for each object; we need to figure out
        # if their np.max(dMag) ever goes over dmag_cutoff; then we will know if
        # we are supposed to simulate them
        true_lc_dict = {}
        true_lc_obshistid_dict = {}
        is_visible_dict = {}
        obs_dict = {}
        max_obshistid = -1
        n_total_observations = 0
        for obs in self.obs_list:
            obs_dict[obs.OpsimMetaData['obsHistID']] = obs
            obshistid = obs.OpsimMetaData['obsHistID']
            if obshistid > max_obshistid:
                max_obshistid = obshistid
            cat = TestAlertsTruthCat(star_db, obs_metadata=obs)

            for line in cat.iter_catalog():
                if line[1] is None:
                    continue

                n_total_observations += 1
                if line[0] not in true_lc_dict:
                    true_lc_dict[line[0]] = {}
                    true_lc_obshistid_dict[line[0]] = []

                true_lc_dict[line[0]][obshistid] = line[2]
                true_lc_obshistid_dict[line[0]].append(obshistid)

                if line[0] not in is_visible_dict:
                    is_visible_dict[line[0]] = False

                if line[3] <= self.obs_mag_cutoff[mag_name_to_int[obs.bandpass]]:
                    is_visible_dict[line[0]] = True

        obshistid_bits = int(np.ceil(np.log(max_obshistid)/np.log(2)))

        skipped_due_to_mag = 0

        objects_to_simulate = []
        obshistid_unqid_set = set()
        for obj_id in true_lc_dict:

            dmag_max = -1.0
            for obshistid in true_lc_dict[obj_id]:
                if np.abs(true_lc_dict[obj_id][obshistid]) > dmag_max:
                    dmag_max = np.abs(true_lc_dict[obj_id][obshistid])

            if dmag_max >= dmag_cutoff:
                if not is_visible_dict[obj_id]:
                    skipped_due_to_mag += 1
                    continue

                objects_to_simulate.append(obj_id)
                for obshistid in true_lc_obshistid_dict[obj_id]:
                    obshistid_unqid_set.add((obj_id << obshistid_bits) + obshistid)

        self.assertGreater(len(objects_to_simulate), 10)
        self.assertGreater(skipped_due_to_mag, 0)

        log_file_name = tempfile.mktemp(dir=self.output_dir, suffix='log.txt')
        alert_gen = AlertDataGenerator(testing=True)

        alert_gen.subdivide_obs(self.obs_list, htmid_level=6)

        for htmid in alert_gen.htmid_list:
            alert_gen.alert_data_from_htmid(htmid, star_db,
                                            photometry_class=TestAlertsVarCat,
                                            output_prefix='alert_test',
                                            output_dir=self.output_dir,
                                            dmag_cutoff=dmag_cutoff,
                                            log_file_name=log_file_name)

        dummy_sed = Sed()

        bp_dict = BandpassDict.loadTotalBandpassesFromFiles()

        phot_params = PhotometricParameters()

        # First, verify that the contents of the sqlite files are all correct

        n_tot_simulated = 0

        alert_query = 'SELECT alert.uniqueId, alert.obshistId, meta.TAI, '
        alert_query += 'meta.band, quiescent.flux, alert.dflux, '
        alert_query += 'quiescent.snr, alert.snr, '
        alert_query += 'alert.ra, alert.dec, alert.chipNum, '
        alert_query += 'alert.xPix, alert.yPix, ast.pmRA, ast.pmDec, '
        alert_query += 'ast.parallax '
        alert_query += 'FROM alert_data AS alert '
        alert_query += 'INNER JOIN metadata AS meta ON meta.obshistId=alert.obshistId '
        alert_query += 'INNER JOIN quiescent_flux AS quiescent '
        alert_query += 'ON quiescent.uniqueId=alert.uniqueId '
        alert_query += 'AND quiescent.band=meta.band '
        alert_query += 'INNER JOIN baseline_astrometry AS ast '
        alert_query += 'ON ast.uniqueId=alert.uniqueId'

        alert_dtype = np.dtype([('uniqueId', int), ('obshistId', int),
                                ('TAI', float), ('band', int),
                                ('q_flux', float), ('dflux', float),
                                ('q_snr', float), ('tot_snr', float),
                                ('ra', float), ('dec', float),
                                ('chipNum', int), ('xPix', float), ('yPix', float),
                                ('pmRA', float), ('pmDec', float), ('parallax', float)])

        sqlite_file_list = os.listdir(self.output_dir)

        n_tot_simulated = 0
        obshistid_unqid_simulated_set = set()
        for file_name in sqlite_file_list:
            if not file_name.endswith('db'):
                continue
            full_name = os.path.join(self.output_dir, file_name)
            self.assertTrue(os.path.exists(full_name))
            alert_db = DBObject(full_name, driver='sqlite')
            alert_data = alert_db.execute_arbitrary(alert_query, dtype=alert_dtype)
            if len(alert_data) == 0:
                continue

            mjd_list = ModifiedJulianDate.get_list(TAI=alert_data['TAI'])
            for i_obj in range(len(alert_data)):
                n_tot_simulated += 1
                obshistid_unqid_simulated_set.add((alert_data['uniqueId'][i_obj] << obshistid_bits) +
                                                  alert_data['obshistId'][i_obj])

                unq = alert_data['uniqueId'][i_obj]
                obj_dex = (unq//1024)-1
                self.assertAlmostEqual(self.pmra_truth[obj_dex], 0.001*alert_data['pmRA'][i_obj], 4)
                self.assertAlmostEqual(self.pmdec_truth[obj_dex], 0.001*alert_data['pmDec'][i_obj], 4)
                self.assertAlmostEqual(self.px_truth[obj_dex], 0.001*alert_data['parallax'][i_obj], 4)

                ra_truth, dec_truth = applyProperMotion(self.ra_truth[obj_dex], self.dec_truth[obj_dex],
                                                        self.pmra_truth[obj_dex], self.pmdec_truth[obj_dex],
                                                        self.px_truth[obj_dex], self.vrad_truth[obj_dex],
                                                        mjd=mjd_list[i_obj])
                distance = angularSeparation(ra_truth, dec_truth,
                                             alert_data['ra'][i_obj], alert_data['dec'][i_obj])

                distance_arcsec = 3600.0*distance
                msg = '\ntruth: %e %e\nalert: %e %e\n' % (ra_truth, dec_truth,
                                                          alert_data['ra'][i_obj],
                                                          alert_data['dec'][i_obj])

                self.assertLess(distance_arcsec, 0.0005, msg=msg)

                obs = obs_dict[alert_data['obshistId'][i_obj]]


                chipname = chipNameFromRaDec(self.ra_truth[obj_dex], self.dec_truth[obj_dex],
                                             pm_ra=self.pmra_truth[obj_dex],
                                             pm_dec=self.pmdec_truth[obj_dex],
                                             parallax=self.px_truth[obj_dex],
                                             v_rad=self.vrad_truth[obj_dex],
                                             obs_metadata=obs,
                                             camera=self.camera)

                chipnum = int(chipname.replace('R', '').replace('S', '').
                              replace(' ', '').replace(';', '').replace(',', '').
                              replace(':', ''))

                self.assertEqual(chipnum, alert_data['chipNum'][i_obj])

                xpix, ypix = pixelCoordsFromRaDec(self.ra_truth[obj_dex], self.dec_truth[obj_dex],
                                                  pm_ra=self.pmra_truth[obj_dex],
                                                  pm_dec=self.pmdec_truth[obj_dex],
                                                  parallax=self.px_truth[obj_dex],
                                                  v_rad=self.vrad_truth[obj_dex],
                                                  obs_metadata=obs,
                                                  camera=self.camera)

                self.assertAlmostEqual(alert_data['xPix'][i_obj], xpix, 4)
                self.assertAlmostEqual(alert_data['yPix'][i_obj], ypix, 4)

                dmag_sim = -2.5*np.log10(1.0+alert_data['dflux'][i_obj]/alert_data['q_flux'][i_obj])
                self.assertAlmostEqual(true_lc_dict[alert_data['uniqueId'][i_obj]][alert_data['obshistId'][i_obj]],
                                       dmag_sim, 3)

                mag_name = ('u', 'g', 'r', 'i', 'z', 'y')[alert_data['band'][i_obj]]
                m5 = obs.m5[mag_name]

                q_mag = dummy_sed.magFromFlux(alert_data['q_flux'][i_obj])
                self.assertAlmostEqual(self.mag0_truth_dict[alert_data['band'][i_obj]][obj_dex],
                                       q_mag, 4)

                snr, gamma = calcSNR_m5(self.mag0_truth_dict[alert_data['band'][i_obj]][obj_dex],
                                        bp_dict[mag_name],
                                        self.obs_mag_cutoff[alert_data['band'][i_obj]],
                                        phot_params)

                self.assertAlmostEqual(snr/alert_data['q_snr'][i_obj], 1.0, 4)

                tot_mag = self.mag0_truth_dict[alert_data['band'][i_obj]][obj_dex] + \
                          true_lc_dict[alert_data['uniqueId'][i_obj]][alert_data['obshistId'][i_obj]]

                snr, gamma = calcSNR_m5(tot_mag, bp_dict[mag_name],
                                        m5, phot_params)
                self.assertAlmostEqual(snr/alert_data['tot_snr'][i_obj], 1.0, 4)

        for val in obshistid_unqid_set:
            self.assertIn(val, obshistid_unqid_simulated_set)
        self.assertEqual(len(obshistid_unqid_set), len(obshistid_unqid_simulated_set))

        astrometry_query = 'SELECT uniqueId, ra, dec, TAI '
        astrometry_query += 'FROM baseline_astrometry'
        astrometry_dtype = np.dtype([('uniqueId', int),
                                     ('ra', float),
                                     ('dec', float),
                                     ('TAI', float)])

        tai_list = []
        for obs in self.obs_list:
            tai_list.append(obs.mjd.TAI)
        tai_list = np.array(tai_list)

        n_tot_ast_simulated = 0
        for file_name in sqlite_file_list:
            if not file_name.endswith('db'):
                continue
            full_name = os.path.join(self.output_dir, file_name)
            self.assertTrue(os.path.exists(full_name))
            alert_db = DBObject(full_name, driver='sqlite')
            astrometry_data = alert_db.execute_arbitrary(astrometry_query, dtype=astrometry_dtype)

            if len(astrometry_data) == 0:
                continue

            mjd_list = ModifiedJulianDate.get_list(TAI=astrometry_data['TAI'])
            for i_obj in range(len(astrometry_data)):
                n_tot_ast_simulated += 1
                obj_dex = (astrometry_data['uniqueId'][i_obj]//1024) - 1
                ra_truth, dec_truth = applyProperMotion(self.ra_truth[obj_dex], self.dec_truth[obj_dex],
                                                        self.pmra_truth[obj_dex], self.pmdec_truth[obj_dex],
                                                        self.px_truth[obj_dex], self.vrad_truth[obj_dex],
                                                        mjd=mjd_list[i_obj])

                distance = angularSeparation(ra_truth, dec_truth,
                                             astrometry_data['ra'][i_obj],
                                             astrometry_data['dec'][i_obj])

                self.assertLess(3600.0*distance, 0.0005)

        del alert_gen
        gc.collect()
        self.assertGreater(n_tot_simulated, 10)
        self.assertGreater(len(obshistid_unqid_simulated_set), 10)
        self.assertLess(len(obshistid_unqid_simulated_set), n_total_observations)
        self.assertGreater(n_tot_ast_simulated, 0)
    def test_generic_camera_wrapper(self):
        """
        Test that GalSimCameraWrapper wraps its methods as expected.
        This is mostly to catch changes in afw API.
        """
        camera = camTestUtils.CameraWrapper().camera
        camera_wrapper = GalSimCameraWrapper(camera)

        obs_mjd = ObservationMetaData(mjd=60000.0)
        ra, dec = raDecFromAltAz(35.0, 112.0, obs_mjd)
        obs = ObservationMetaData(pointingRA=ra,
                                  pointingDec=dec,
                                  mjd=obs_mjd.mjd,
                                  rotSkyPos=22.4)

        rng = np.random.RandomState(8124)

        for detector in camera:
            name = detector.getName()
            bbox = camera[name].getBBox()
            bbox_wrapper = camera_wrapper.getBBox(name)
            self.assertEqual(bbox.getMinX(), bbox_wrapper.getMinX())
            self.assertEqual(bbox.getMaxX(), bbox_wrapper.getMaxX())
            self.assertEqual(bbox.getMinY(), bbox_wrapper.getMinY())
            self.assertEqual(bbox.getMaxY(), bbox_wrapper.getMaxY())

            center_point = camera[name].getCenter(FOCAL_PLANE)
            pixel_system = camera[name].makeCameraSys(PIXELS)
            center_pix = camera.transform(center_point, FOCAL_PLANE,
                                          pixel_system)
            center_pix_wrapper = camera_wrapper.getCenterPixel(name)
            self.assertEqual(center_pix.getX(), center_pix_wrapper.getX())
            self.assertEqual(center_pix.getY(), center_pix_wrapper.getY())

            pupil_system = camera[name].makeCameraSys(FIELD_ANGLE)
            center_pupil = camera.transform(center_point, FOCAL_PLANE,
                                            pupil_system)
            center_pupil_wrapper = camera_wrapper.getCenterPupil(name)
            self.assertEqual(center_pupil.getX(), center_pupil_wrapper.getX())
            self.assertEqual(center_pupil.getY(), center_pupil_wrapper.getY())

            corner_pupil_wrapper = camera_wrapper.getCornerPupilList(name)
            corner_point_list = camera[name].getCorners(FOCAL_PLANE)
            for point in corner_point_list:
                point_pupil = camera.transform(point, FOCAL_PLANE,
                                               pupil_system)
                dd_min = 1.0e10
                for wrapper_point in corner_pupil_wrapper:
                    dd = np.sqrt(
                        (point_pupil.getX() - wrapper_point.getX())**2 +
                        (point_pupil.getY() - wrapper_point.getY())**2)

                    if dd < dd_min:
                        dd_min = dd
                self.assertLess(dd_min, 1.0e-20)

            xpix_min = None
            xpix_max = None
            ypix_min = None
            ypix_max = None
            focal_to_tan_pix = camera[name].getTransform(
                FOCAL_PLANE, TAN_PIXELS)
            for point in corner_point_list:
                pixel_point = focal_to_tan_pix.applyForward(point)
                xx = pixel_point.getX()
                yy = pixel_point.getY()
                if xpix_min is None or xx < xpix_min:
                    xpix_min = xx
                if ypix_min is None or yy < ypix_min:
                    ypix_min = yy
                if xpix_max is None or xx > xpix_max:
                    xpix_max = xx
                if ypix_max is None or yy > ypix_max:
                    ypix_max = yy

            pix_bounds_wrapper = camera_wrapper.getTanPixelBounds(name)
            self.assertEqual(pix_bounds_wrapper[0], xpix_min)
            self.assertEqual(pix_bounds_wrapper[1], xpix_max)
            self.assertEqual(pix_bounds_wrapper[2], ypix_min)
            self.assertEqual(pix_bounds_wrapper[3], ypix_max)

            x_pup = rng.random_sample(10) * 0.005 - 0.01
            y_pup = rng.random_sample(10) * 0.005 - 0.01
            x_pix, y_pix = pixelCoordsFromPupilCoords(x_pup,
                                                      y_pup,
                                                      chipName=name,
                                                      camera=camera)

            (x_pix_wrapper,
             y_pix_wrapper) = camera_wrapper.pixelCoordsFromPupilCoords(
                 x_pup, y_pup, name, obs)

            nan_x = np.where(np.isnan(x_pix))
            self.assertEqual(len(nan_x[0]), 0)
            np.testing.assert_array_equal(x_pix, x_pix_wrapper)
            np.testing.assert_array_equal(y_pix, y_pix_wrapper)

            x_pix = rng.random_sample(10) * 100.0 - 200.0
            y_pix = rng.random_sample(10) * 100.0 - 200.0
            x_pup, y_pup = pupilCoordsFromPixelCoords(x_pix,
                                                      y_pix,
                                                      chipName=name,
                                                      camera=camera)

            (x_pup_wrapper,
             y_pup_wrapper) = camera_wrapper.pupilCoordsFromPixelCoords(
                 x_pix, y_pix, name, obs)

            nan_x = np.where(np.isnan(x_pup))
            self.assertEqual(len(nan_x[0]), 0)
            np.testing.assert_array_equal(x_pup, x_pup_wrapper)
            np.testing.assert_array_equal(y_pup, y_pup_wrapper)

            ra, dec = raDecFromPixelCoords(x_pix,
                                           y_pix,
                                           name,
                                           camera=camera,
                                           obs_metadata=obs)

            (ra_wrapper, dec_wrapper) = camera_wrapper.raDecFromPixelCoords(
                x_pix, y_pix, name, obs)

            nan_ra = np.where(np.isnan(ra))
            self.assertEqual(len(nan_ra[0]), 0)
            np.testing.assert_array_equal(ra, ra_wrapper)
            np.testing.assert_array_equal(dec, dec_wrapper)

            ra, dec = _raDecFromPixelCoords(x_pix,
                                            y_pix,
                                            name,
                                            camera=camera,
                                            obs_metadata=obs)

            (ra_wrapper, dec_wrapper) = camera_wrapper._raDecFromPixelCoords(
                x_pix, y_pix, name, obs)

            nan_ra = np.where(np.isnan(ra))
            self.assertEqual(len(nan_ra[0]), 0)
            np.testing.assert_array_equal(ra, ra_wrapper)
            np.testing.assert_array_equal(dec, dec_wrapper)

            ra = obs.pointingRA + (rng.random_sample(10) * 150.0 -
                                   100.0) / 160.0
            dec = obs.pointingDec + (rng.random_sample(10) * 150.0 -
                                     100.0) / 160.0

            x_pix, y_pix = pixelCoordsFromRaDec(ra,
                                                dec,
                                                chipName=name,
                                                camera=camera,
                                                obs_metadata=obs)

            (x_pix_wrapper,
             y_pix_wrapper) = camera_wrapper.pixelCoordsFromRaDec(
                 ra, dec, chipName=name, obs_metadata=obs)

            nan_x = np.where(np.isnan(x_pix))
            self.assertEqual(len(nan_x[0]), 0)
            np.testing.assert_array_equal(x_pix, x_pix_wrapper)
            np.testing.assert_array_equal(y_pix, y_pix_wrapper)

            ra = np.radians(ra)
            dec = np.radians(dec)

            x_pix, y_pix = _pixelCoordsFromRaDec(ra,
                                                 dec,
                                                 chipName=name,
                                                 camera=camera,
                                                 obs_metadata=obs)

            (x_pix_wrapper,
             y_pix_wrapper) = camera_wrapper._pixelCoordsFromRaDec(
                 ra, dec, chipName=name, obs_metadata=obs)

            nan_x = np.where(np.isnan(x_pix))
            self.assertEqual(len(nan_x[0]), 0)
            np.testing.assert_array_equal(x_pix, x_pix_wrapper)
            np.testing.assert_array_equal(y_pix, y_pix_wrapper)

        del camera
    chip_name_grid = chipNameFromRaDec(ra_grid, dec_grid,
                                       obs_metadata=obs, camera=camera)

    valid = np.where(np.char.find(chip_name_grid.astype(str), 'None')<0)

    ra_grid = ra_grid[valid]
    dec_grid = dec_grid[valid]
    chip_name_grid = chip_name_grid[valid]

    focal_x, focal_y = focalPlaneCoordsFromRaDec(ra_grid, dec_grid,
                                                 obs_metadata=obs,
                                                 camera=camera)

    pix_x, pix_y = pixelCoordsFromRaDec(ra_grid, dec_grid,
                                        chipName=chip_name_grid,
                                        obs_metadata=obs,
                                        camera=camera)

    with open('lsst_pixel_data.txt', 'w') as out_file:
        out_file.write(header_msg)
        out_file.write('# ra dec chipName focal_x focal_y pix_x pix_y\n')
        for i_obj in range(len(ra_grid)):
            out_file.write('%.2f;%.2f;%s;%.5f;%.5f;%.5f;%.5f\n' %
                           (ra_grid[i_obj], dec_grid[i_obj],
                            chip_name_grid[i_obj],
                            focal_x[i_obj], focal_y[i_obj],
                            pix_x[i_obj], pix_y[i_obj]))

    detector_name_list = [dd.getName() for dd in camera]
    detector_name_list.sort()
Beispiel #9
0
                                       camera=camera)

    valid = np.where(np.char.find(chip_name_grid.astype(str), 'None') < 0)

    ra_grid = ra_grid[valid]
    dec_grid = dec_grid[valid]
    chip_name_grid = chip_name_grid[valid]

    focal_x, focal_y = focalPlaneCoordsFromRaDec(ra_grid,
                                                 dec_grid,
                                                 obs_metadata=obs,
                                                 camera=camera)

    pix_x, pix_y = pixelCoordsFromRaDec(ra_grid,
                                        dec_grid,
                                        chipName=chip_name_grid,
                                        obs_metadata=obs,
                                        camera=camera)

    with open('lsst_pixel_data.txt', 'w') as out_file:
        out_file.write(header_msg)
        out_file.write('# ra dec chipName focal_x focal_y pix_x pix_y\n')
        for i_obj in range(len(ra_grid)):
            out_file.write(
                '%.2f;%.2f;%s;%.5f;%.5f;%.5f;%.5f\n' %
                (ra_grid[i_obj], dec_grid[i_obj], chip_name_grid[i_obj],
                 focal_x[i_obj], focal_y[i_obj], pix_x[i_obj], pix_y[i_obj]))

    detector_name_list = [dd.getName() for dd in camera]
    detector_name_list.sort()
    def test_pixel_coords_from_ra_dec_degrees(self):
        """
        Test that pixelCoordsFromRaDec and pixelCoordsFromRaDecLSST agree
        """
        raP = 74.2
        decP = 13.0
        obs = ObservationMetaData(pointingRA=raP, pointingDec=decP,
                                  rotSkyPos=13.0, mjd=43441.0)

        n_obj = 1000
        rng = np.random.RandomState(83241)
        rr = rng.random_sample(n_obj)*1.75
        theta = rng.random_sample(n_obj)*2.0*np.pi
        ra_list = raP + rr*np.cos(theta)
        dec_list = decP + rr*np.sin(theta)

        x_pix, y_pix = pixelCoordsFromRaDec(ra_list, dec_list, obs_metadata=obs, camera=self.camera,
                                            includeDistortion=False)
        self.assertLessEqual(len(np.where(np.isnan(x_pix))[0]), n_obj/10)
        self.assertLessEqual(len(np.where(np.isnan(y_pix))[0]), n_obj/10)

        x_pix_test, y_pix_test = pixelCoordsFromRaDecLSST(ra_list, dec_list, obs_metadata=obs,
                                                          includeDistortion=False)
        try:
            np.testing.assert_array_equal(x_pix, x_pix_test)
            np.testing.assert_array_equal(y_pix, y_pix_test)
        except AssertionError:
            n_problematic = 0
            for xx, yy, xt, yt in zip(x_pix, y_pix, x_pix_test, y_pix_test):
                if xx!=xt or yy!=yt:
                    if (not np.isnan(xx) and not np.isnan(xt) and
                        not np.isnan(yy) and not np.isnan(yt)):
                        print(xx,yy,xt,yt)

                        n_problematic += 1
            if n_problematic>0:
                raise

        # test when we force a chipName
        x_pix, y_pix = pixelCoordsFromRaDec(ra_list, dec_list, chipName=['R:2,2 S:1,1'],
                                            obs_metadata=obs, camera=self.camera,
                                            includeDistortion=False)
        self.assertLessEqual(len(np.where(np.isnan(x_pix))[0]), n_obj/10)
        self.assertLessEqual(len(np.where(np.isnan(y_pix))[0]), n_obj/10)

        x_pix_test, y_pix_test = pixelCoordsFromRaDecLSST(ra_list, dec_list, chipName=['R:2,2 S:1,1'],
                                                          obs_metadata=obs,
                                                          includeDistortion=False)
        np.testing.assert_array_equal(x_pix, x_pix_test)
        np.testing.assert_array_equal(y_pix, y_pix_test)

        # test without distortion
        x_pix, y_pix = pixelCoordsFromRaDec(ra_list, dec_list, obs_metadata=obs, camera=self.camera,
                                            includeDistortion=False)
        self.assertLessEqual(len(np.where(np.isnan(x_pix))[0]), n_obj/10)
        self.assertLessEqual(len(np.where(np.isnan(y_pix))[0]), n_obj/10)

        x_pix_test, y_pix_test = pixelCoordsFromRaDecLSST(ra_list, dec_list, obs_metadata=obs,
                                                          includeDistortion=False)
        try:
            np.testing.assert_array_equal(x_pix, x_pix_test)
            np.testing.assert_array_equal(y_pix, y_pix_test)
        except AssertionError:
            n_problematic = 0
            for xx, yy, xt, yt in zip(x_pix, y_pix, x_pix_test, y_pix_test):
                if xx!=xt or yy!=yt:
                    if (not np.isnan(xx) and not np.isnan(xt) and
                        not np.isnan(yy) and not np.isnan(yt)):
                        print(xx,yy,xt,yt)

                        n_problematic += 1
            if n_problematic>0:
                raise

        # test that exceptions are raised when incomplete ObservationMetaData are used
        obs = ObservationMetaData(pointingRA=raP, pointingDec=decP, mjd=59580.0)
        with self.assertRaises(RuntimeError) as context:
            pixelCoordsFromRaDecLSST(ra_list, dec_list, obs_metadata=obs)
        self.assertIn("rotSkyPos", context.exception.args[0])

        obs = ObservationMetaData(pointingRA=raP, pointingDec=decP, rotSkyPos=35.0)
        with self.assertRaises(RuntimeError) as context:
            pixelCoordsFromRaDecLSST(ra_list, dec_list, obs_metadata=obs)
        self.assertIn("mjd", context.exception.args[0])

        with self.assertRaises(RuntimeError) as context:
            pixelCoordsFromRaDecLSST(ra_list, dec_list)
        self.assertIn("ObservationMetaData", context.exception.args[0])

        # check that exceptions are raised when ra_list, dec_list are of the wrong shape
        obs = ObservationMetaData(pointingRA=raP, pointingDec=decP, rotSkyPos=24.0, mjd=43000.0)
        with self.assertRaises(RuntimeError) as context:
            pixelCoordsFromRaDecLSST(ra_list, dec_list[:5], obs_metadata=obs)
        self.assertIn("same length", context.exception.args[0])