def setup_model_scaffolding(
        raw_df,
        input_features,
        output_features
):
    # setup input feature for testing
    config = {'input_features': input_features,
              'output_features': output_features}

    # setup model scaffolding to for testing
    model = LudwigModel(config)
    training_set, _, _, training_set_metadata = preprocess_for_training(
        config,
        training_set=raw_df,
        skip_save_processed_input=True
    )
    model.training_set_metadata = training_set_metadata
    update_config_with_metadata(
        model.config,
        training_set_metadata
    )
    model.model = model.create_model(model.config)

    # setup batcher to go through synthetic data
    with training_set.initialize_batcher() as batcher:
        yield model, batcher
def test_experiment_dataset_formats(data_format):
    # primary focus of this test is to determine if exceptions are
    # raised for different data set formats and in_memory setting

    input_features = [
        numerical_feature(),
        category_feature()
    ]
    output_features = [
        category_feature(),
        numerical_feature()
    ]

    config = {
        'input_features': input_features,
        'output_features': output_features,
        'combiner': {
            'type': 'concat',
            'fc_size': 14
        },
        'preprocessing': {},
        'training': {'epochs': 2}
    }

    # create temporary name for train and test data sets
    csv_filename = 'train_' + uuid.uuid4().hex[:10].upper() + '.csv'

    # setup training data format to test
    raw_data = generate_data(input_features, output_features,
                               csv_filename)

    training_set_metadata = None

    if data_format == 'hdf5':
        # hdf5 format
        training_set, _, _, training_set_metadata = preprocess_for_training(
            config,
            dataset=raw_data
        )
        dataset_to_use = training_set.data_hdf5_fp
    else:
        dataset_to_use = create_data_set_to_use(data_format, raw_data)

    # define Ludwig model
    model = LudwigModel(
        config=config
    )
    model.train(
        dataset=dataset_to_use,
        training_set_metadata=training_set_metadata,
        random_seed=default_random_seed
    )

    # # run functions with the specified data format
    model.evaluate(dataset=dataset_to_use)
    model.predict(dataset=dataset_to_use)

    # Delete the temporary data created
    delete_temporary_data(csv_filename)
Beispiel #3
0
def test_regularizers(
    input_features,
    output_features,
):

    np.random.seed(RANDOM_SEED)
    torch.manual_seed(RANDOM_SEED)
    random.seed(0)

    data_file = generate_data(input_features, output_features, num_examples=BATCH_SIZE)
    data_df = read_csv(data_file)

    regularizer_losses = []
    for regularization_type in [None, "l1", "l2", "l1_l2"]:

        config = {
            "input_features": input_features,
            "output_features": output_features,
            "combiner": {"type": "concat", "output_size": 14},
            TRAINER: {"epochs": 2, "regularization_type": regularization_type, "regularization_lambda": 0.1},
        }

        backend = LocalTestBackend()
        model = LudwigModel(config, backend=backend)
        processed_data_df, _, _, _ = preprocess_for_training(config, data_df, backend=backend)
        with processed_data_df.initialize_batcher(batch_size=BATCH_SIZE) as batcher:
            batch = batcher.next_batch()

        _, _, _ = model.train(
            training_set=data_df,
            skip_save_processed_input=True,
            skip_save_progress=True,
            skip_save_unprocessed_output=True,
        )

        inputs = {
            i_feat.feature_name: torch.from_numpy(batch[i_feat.proc_column]).to(DEVICE)
            for i_feat in model.model.input_features.values()
        }
        targets = {
            o_feat.feature_name: torch.from_numpy(batch[o_feat.proc_column]).to(DEVICE)
            for o_feat in model.model.output_features.values()
        }
        predictions = model.model((inputs, targets))

        loss, _ = model.model.train_loss(targets, predictions, regularization_type, 0.1)
        regularizer_losses.append(loss)

    # Regularizer_type=None has lowest regularizer loss
    assert min(regularizer_losses) == regularizer_losses[0]

    # l1, l2 and l1_l2 should be greater than zero
    assert torch.all(torch.tensor([t - regularizer_losses[0] > 0.0 for t in regularizer_losses[1:]]))

    # using default setting l1 + l2 == l1_l2 losses
    assert torch.isclose(
        regularizer_losses[1] + regularizer_losses[2] - regularizer_losses[0], regularizer_losses[3], rtol=0.1
    )
Beispiel #4
0
    def train_online(self,
                     dataset,
                     training_set_metadata=None,
                     data_format='auto',
                     random_seed=default_random_seed,
                     debug=False):
        """Performs one epoch of training of the model on `dataset`.

        :param dataset: (string, dict, DataFrame) source containing the training dataset.
        :param training_set_metadata: (string, dict) metadata JSON file or loaded metadata.
               Intermediate preprocess structure containing the mappings of the input
               CSV created the first time a CSV file is used in the same
               directory with the same name and a '.json' extension.
        :param data_format: (string) format to interpret data sources. Will be inferred
               automatically if not specified.
        :param random_seed: (int, default`42`) a random seed that is going to be
               used anywhere there is a call to a random number generator: data
               splitting, parameter initialization and training set shuffling
        :param debug: (bool, default: `False`) enables debugging mode

        """
        training_set_metadata = training_set_metadata or self.training_set_metadata
        training_dataset, _, _, training_set_metadata = preprocess_for_training(
            self.model_definition,
            training_set=dataset,
            training_set_metadata=training_set_metadata,
            data_format=data_format,
            skip_save_processed_input=True,
            preprocessing_params=self.model_definition[PREPROCESSING],
            random_seed=random_seed
        )

        if not self.training_set_metadata:
            self.training_set_metadata = training_set_metadata

        if not self.model:
            update_model_definition_with_metadata(
                self.model_definition,
                training_set_metadata
            )
            self.model = LudwigModel.create_model(self.model_definition,
                                                  random_seed=random_seed)

        if not self._online_trainer:
            self._online_trainer = Trainer(
                **self.model_definition[TRAINING],
                random_seed=random_seed,
                horoovd=self._horovod,
                debug=debug
            )

        self._online_trainer.train_online(
            self.model,
            training_dataset,
        )
Beispiel #5
0
def test_experiment_dataset_formats(data_format, csv_filename):
    # primary focus of this test is to determine if exceptions are
    # raised for different data set formats and in_memory setting

    input_features = [number_feature(), category_feature()]
    output_features = [category_feature(), number_feature()]

    config = {
        "input_features": input_features,
        "output_features": output_features,
        "combiner": {
            "type": "concat",
            "output_size": 14
        },
        "preprocessing": {},
        TRAINER: {
            "epochs": 2
        },
    }

    # setup training data format to test
    raw_data = generate_data(input_features, output_features, csv_filename)

    training_set_metadata = None

    if data_format == "hdf5":
        # hdf5 format
        training_set, _, _, training_set_metadata = preprocess_for_training(
            config, dataset=raw_data)
        dataset_to_use = training_set.data_hdf5_fp
    else:
        dataset_to_use = create_data_set_to_use(data_format, raw_data)

    # define Ludwig model
    model = LudwigModel(config=config)
    model.train(dataset=dataset_to_use,
                training_set_metadata=training_set_metadata,
                random_seed=default_random_seed)

    # # run functions with the specified data format
    model.evaluate(dataset=dataset_to_use)
    model.predict(dataset=dataset_to_use)
Beispiel #6
0
def full_train(model_definition,
               model_definition_file=None,
               data_df=None,
               data_train_df=None,
               data_validation_df=None,
               data_test_df=None,
               data_csv=None,
               data_train_csv=None,
               data_validation_csv=None,
               data_test_csv=None,
               data_hdf5=None,
               data_train_hdf5=None,
               data_validation_hdf5=None,
               data_test_hdf5=None,
               train_set_metadata_json=None,
               experiment_name='experiment',
               model_name='run',
               model_load_path=None,
               model_resume_path=None,
               skip_save_model=False,
               skip_save_progress=False,
               skip_save_log=False,
               skip_save_processed_input=False,
               output_directory='results',
               should_close_session=True,
               gpus=None,
               gpu_fraction=1.0,
               use_horovod=False,
               random_seed=42,
               debug=False,
               **kwargs):
    """*full_train* defines the entire training procedure used by Ludwig's
    internals. Requires most of the parameters that are taken into the model.
    Builds a full ludwig model and performs the training.
    :param data_test_df:
    :param data_df:
    :param data_train_df:
    :param data_validation_df:
    :param model_definition: Model definition which defines the different
           parameters of the model, features, preprocessing and training.
    :type model_definition: Dictionary
    :param model_definition_file: The file that specifies the model definition.
           It is a yaml file.
    :type model_definition_file: filepath (str)
    :param data_csv: A CSV file contanining the input data which is used to
           train, validate and test a model. The CSV either contains a
           split column or will be split.
    :type data_csv: filepath (str)
    :param data_train_csv: A CSV file contanining the input data which is used
           to train a model.
    :type data_train_csv: filepath (str)
    :param data_validation_csv: A CSV file contanining the input data which is used
           to validate a model..
    :type data_validation_csv: filepath (str)
    :param data_test_csv: A CSV file contanining the input data which is used
           to test a model.
    :type data_test_csv: filepath (str)
    :param data_hdf5: If the dataset is in the hdf5 format, this is used instead
           of the csv file.
    :type data_hdf5: filepath (str)
    :param data_train_hdf5: If the training set is in the hdf5 format, this is
           used instead of the csv file.
    :type data_train_hdf5: filepath (str)
    :param data_validation_hdf5: If the validation set is in the hdf5 format,
           this is used instead of the csv file.
    :type data_validation_hdf5: filepath (str)
    :param data_test_hdf5: If the test set is in the hdf5 format, this is
           used instead of the csv file.
    :type data_test_hdf5: filepath (str)
    :param train_set_metadata_json: If the dataset is in hdf5 format, this is
           the associated json file containing metadata.
    :type train_set_metadata_json: filepath (str)
    :param experiment_name: The name for the experiment.
    :type experiment_name: Str
    :param model_name: Name of the model that is being used.
    :type model_name: Str
    :param model_load_path: If this is specified the loaded model will be used
           as initialization (useful for transfer learning).
    :type model_load_path: filepath (str)
    :param model_resume_path: Resumes training of the model from the path
           specified. The difference with model_load_path is that also training
           statistics like the current epoch and the loss and performance so
           far are also resumed effectively cotinuing a previously interrupted
           training process.
    :type model_resume_path: filepath (str)
    :param skip_save_model: Disables
               saving model weights and hyperparameters each time the model
           improves. By default Ludwig saves model weights after each epoch
           the validation measure imrpvoes, but if the model is really big
           that can be time consuming if you do not want to keep
           the weights and just find out what performance can a model get
           with a set of hyperparameters, use this parameter to skip it,
           but the model will not be loadable later on.
    :type skip_save_model: Boolean
    :param skip_save_progress: Disables saving
           progress each epoch. By default Ludwig saves weights and stats
           after each epoch for enabling resuming of training, but if
           the model is really big that can be time consuming and will uses
           twice as much space, use this parameter to skip it, but training
           cannot be resumed later on.
    :type skip_save_progress: Boolean
    :param skip_save_processed_input: If a CSV dataset is provided it is
           preprocessed and then saved as an hdf5 and json to avoid running
           the preprocessing again. If this parameter is False,
           the hdf5 and json file are not saved.
    :type skip_save_processed_input: Boolean
    :param skip_save_log: Disables saving TensorBoard
           logs. By default Ludwig saves logs for the TensorBoard, but if it
           is not needed turning it off can slightly increase the
           overall speed..
    :type skip_save_progress: Boolean
    :param output_directory: The directory that will contanin the training
           statistics, the saved model and the training procgress files.
    :type output_directory: filepath (str)
    :param gpus: List of GPUs that are available for training.
    :type gpus: List
    :param gpu_fraction: Fraction of the memory of each GPU to use at
           the beginning of the training. The memory may grow elastically.
    :type gpu_fraction: Integer
    :param random_seed: Random seed used for weights initialization,
           splits and any other random function.
    :type random_seed: Integer
    :param debug: If true turns on tfdbg with inf_or_nan checks.
    :type debug: Boolean
    :returns: None
    """
    # set input features defaults
    if model_definition_file is not None:
        with open(model_definition_file, 'r') as def_file:
            model_definition = merge_with_defaults(yaml.safe_load(def_file))
    else:
        model_definition = merge_with_defaults(model_definition)

    # setup directories and file names
    experiment_dir_name = None
    if model_resume_path is not None:
        if os.path.exists(model_resume_path):
            experiment_dir_name = model_resume_path
        else:
            if is_on_master():
                logger.info('Model resume path does not exists, '
                            'starting training from scratch')
            model_resume_path = None

    if model_resume_path is None:
        if is_on_master():
            experiment_dir_name = get_experiment_dir_name(
                output_directory, experiment_name, model_name)
        else:
            experiment_dir_name = '.'

    # if model_load_path is not None, load its train_set_metadata
    if model_load_path is not None:
        train_set_metadata_json = os.path.join(model_load_path,
                                               TRAIN_SET_METADATA_FILE_NAME)

    description_fn, training_stats_fn, model_dir = get_file_names(
        experiment_dir_name)

    # save description
    description = get_experiment_description(
        model_definition,
        data_csv=data_csv,
        data_train_csv=data_train_csv,
        data_validation_csv=data_validation_csv,
        data_test_csv=data_test_csv,
        data_hdf5=data_hdf5,
        data_train_hdf5=data_train_hdf5,
        data_validation_hdf5=data_validation_hdf5,
        data_test_hdf5=data_test_hdf5,
        metadata_json=train_set_metadata_json,
        random_seed=random_seed)
    if is_on_master():
        save_json(description_fn, description)
        # print description
        logger.info('Experiment name: {}'.format(experiment_name))
        logger.info('Model name: {}'.format(model_name))
        logger.info('Output path: {}'.format(experiment_dir_name))
        logger.info('\n')
        for key, value in description.items():
            logger.info('{}: {}'.format(key, pformat(value, indent=4)))
        logger.info('\n')

    # preprocess
    preprocessed_data = preprocess_for_training(
        model_definition,
        data_df=data_df,
        data_train_df=data_train_df,
        data_validation_df=data_validation_df,
        data_test_df=data_test_df,
        data_csv=data_csv,
        data_train_csv=data_train_csv,
        data_validation_csv=data_validation_csv,
        data_test_csv=data_test_csv,
        data_hdf5=data_hdf5,
        data_train_hdf5=data_train_hdf5,
        data_validation_hdf5=data_validation_hdf5,
        data_test_hdf5=data_test_hdf5,
        train_set_metadata_json=train_set_metadata_json,
        skip_save_processed_input=skip_save_processed_input,
        preprocessing_params=model_definition['preprocessing'],
        random_seed=random_seed)

    (training_set, validation_set, test_set,
     train_set_metadata) = preprocessed_data

    if is_on_master():
        logger.info('Training set: {0}'.format(training_set.size))
        if validation_set is not None:
            logger.info('Validation set: {0}'.format(validation_set.size))
        if test_set is not None:
            logger.info('Test set: {0}'.format(test_set.size))

    # update model definition with metadata properties
    update_model_definition_with_metadata(model_definition, train_set_metadata)

    if is_on_master():
        if not skip_save_model:
            # save train set metadata
            os.makedirs(model_dir, exist_ok=True)
            save_json(os.path.join(model_dir, TRAIN_SET_METADATA_FILE_NAME),
                      train_set_metadata)

    # run the experiment
    model, result = train(training_set=training_set,
                          validation_set=validation_set,
                          test_set=test_set,
                          model_definition=model_definition,
                          save_path=model_dir,
                          model_load_path=model_load_path,
                          resume=model_resume_path is not None,
                          skip_save_model=skip_save_model,
                          skip_save_progress=skip_save_progress,
                          skip_save_log=skip_save_log,
                          gpus=gpus,
                          gpu_fraction=gpu_fraction,
                          use_horovod=use_horovod,
                          random_seed=random_seed,
                          debug=debug)

    train_trainset_stats, train_valisest_stats, train_testset_stats = result
    train_stats = {
        'train': train_trainset_stats,
        'validation': train_valisest_stats,
        'test': train_testset_stats
    }

    if should_close_session:
        model.close_session()

    if is_on_master():
        # save training and test statistics
        save_json(training_stats_fn, train_stats)

    # grab the results of the model with highest validation test performance
    validation_field = model_definition['training']['validation_field']
    validation_measure = model_definition['training']['validation_measure']
    validation_field_result = train_valisest_stats[validation_field]

    best_function = get_best_function(validation_measure)
    # results of the model with highest validation test performance
    if is_on_master() and validation_set is not None:
        epoch_best_vali_measure, best_vali_measure = best_function(
            enumerate(validation_field_result[validation_measure]),
            key=lambda pair: pair[1])
        logger.info(
            'Best validation model epoch: {0}'.format(epoch_best_vali_measure +
                                                      1))
        logger.info(
            'Best validation model {0} on validation set {1}: {2}'.format(
                validation_measure, validation_field, best_vali_measure))
        if test_set is not None:
            best_vali_measure_epoch_test_measure = train_testset_stats[
                validation_field][validation_measure][epoch_best_vali_measure]

            logger.info(
                'Best validation model {0} on test set {1}: {2}'.format(
                    validation_measure, validation_field,
                    best_vali_measure_epoch_test_measure))
        logger.info('\nFinished: {0}_{1}'.format(experiment_name, model_name))
        logger.info('Saved to: {0}'.format(experiment_dir_name))

    contrib_command("train_save", experiment_dir_name)

    return (model, preprocessed_data, experiment_dir_name, train_stats,
            model_definition)
Beispiel #7
0
    def train(self,
              data_df=None,
              data_train_df=None,
              data_validation_df=None,
              data_test_df=None,
              data_csv=None,
              data_train_csv=None,
              data_validation_csv=None,
              data_test_csv=None,
              data_hdf5=None,
              data_train_hdf5=None,
              data_validation_hdf5=None,
              data_test_hdf5=None,
              train_set_metadata_json=None,
              dataset_type='generic',
              model_name='run',
              model_load_path=None,
              model_resume_path=None,
              skip_save_model=False,
              skip_save_progress=False,
              skip_save_log=False,
              skip_save_processed_input=False,
              output_directory='results',
              gpus=None,
              gpu_fraction=1.0,
              random_seed=42,
              logging_level=logging.ERROR,
              debug=False,
              **kwargs):
        """This function is used to perform a full training of the model on the 
           specified dataset.

        # Inputs

        :param data_df: (DataFrame) dataframe containing data. If it has a split
               column, it will be used for splitting (0: train, 1: validation,
               2: test), otherwise the dataset will be randomly split
        :param data_train_df: (DataFrame) dataframe containing training data
        :param data_validation_df: (DataFrame) dataframe containing validation
               data
        :param data_test_df: (DataFrame dataframe containing test data
        :param data_csv: (string) input data CSV file. If it has a split column,
               it will be used for splitting (0: train, 1: validation, 2: test),
               otherwise the dataset will be randomly split
        :param data_train_csv: (string) input train data CSV file
        :param data_validation_csv: (string) input validation data CSV file
        :param data_test_csv: (string) input test data CSV file
        :param data_hdf5: (string) input data HDF5 file. It is an intermediate
               preprocess  version of the input CSV created the first time a CSV
               file is used in the same directory with the same name and a hdf5
               extension
        :param data_train_hdf5: (string) input train data HDF5 file. It is an
               intermediate preprocess  version of the input CSV created the
               first time a CSV file is used in the same directory with the same
               name and a hdf5 extension
        :param data_validation_hdf5: (string) input validation data HDF5 file.
               It is an intermediate preprocess version of the input CSV created
               the first time a CSV file is used in the same directory with the
               same name and a hdf5 extension
        :param data_test_hdf5: (string) input test data HDF5 file. It is an
               intermediate preprocess  version of the input CSV created the
               first time a CSV file is used in the same directory with the same
               name and a hdf5 extension
        :param train_set_metadata_json: (string) input metadata JSON file. It is an
               intermediate preprocess file containing the mappings of the input
               CSV created the first time a CSV file is used in the same
               directory with the same name and a json extension
        :param dataset_type: (string, default: `'default'`) determines the type
               of preprocessing will be applied to the data. Only `generic` is
               available at the moment
        :param model_name: (string) a name for the model, user for the save
               directory
        :param model_load_path: (string) path of a pretrained model to load as
               initialization
        :param model_resume_path: (string) path of a the model directory to
               resume training of
        :param skip_save_model: (bool, default: `False`) disables
               saving model weights and hyperparameters each time the model
               improves. By default Ludwig saves model weights after each epoch
               the validation measure imrpvoes, but if the model is really big
               that can be time consuming if you do not want to keep
               the weights and just find out what performance can a model get
               with a set of hyperparameters, use this parameter to skip it,
               but the model will not be loadable later on.
        :param skip_save_progress: (bool, default: `False`) disables saving
               progress each epoch. By default Ludwig saves weights and stats
               after each epoch for enabling resuming of training, but if
               the model is really big that can be time consuming and will uses
               twice as much space, use this parameter to skip it, but training
               cannot be resumed later on.
        :param skip_save_log: (bool, default: `False`) disables saving TensorBoard
               logs. By default Ludwig saves logs for the TensorBoard, but if it
               is not needed turning it off can slightly increase the
               overall speed.
        :param skip_save_processed_input: (bool, default: `False`) skips saving
               intermediate HDF5 and JSON files
        :param output_directory: (string, default: `'results'`) directory that
               contains the results
        :param gpus: (string, default: `None`) list of GPUs to use (it uses the
               same syntax of CUDA_VISIBLE_DEVICES)
        :param gpu_fraction: (float, default `1.0`) fraction of gpu memory to
               initialize the process with
        :param random_seed: (int, default`42`) a random seed that is going to be
               used anywhere there is a call to a random number generator: data
               splitting, parameter initialization and training set shuffling
        :param debug: (bool, default: `False`) enables debugging mode
        :param logging_level: (int, default: `logging.ERROR`) logging level to
               use for logging. Use logging constants like `logging.DEBUG`,
               `logging.INFO` and `logging.ERROR`. By default only errors will
               be printed.

        There are three ways to provide data: by dataframes using the `_df`
        parameters, by CSV using the `_csv` parameters and by HDF5 and JSON,
        using `_hdf5` and `_json` parameters.
        The DataFrame approach uses data previously obtained and put in a
        dataframe, the CSV approach loads data from a CSV file, while HDF5 and
        JSON load previously preprocessed HDF5 and JSON files (they are saved in
        the same directory of the CSV they are obtained from).
        For all three approaches either a full dataset can be provided (which
        will be split randomly according to the split probabilities defined in
        the model definition, by default 70% training, 10% validation and 20%
        test) or, if it contanins a plit column, it will be plit according to
        that column (interpreting 0 as training, 1 as validation and 2 as test).
        Alternatively separated dataframes / CSV / HDF5 files can beprovided
        for each split.

        During training the model and statistics will be saved in a directory
        `[output_dir]/[experiment_name]_[model_name]_n` where all variables are
        resolved to user spiecified ones and `n` is an increasing number
        starting from 0 used to differentiate different runs.


        # Return

        :return: (dict) a dictionary containing training statistics for each
        output feature containing loss and measures values for each epoch.

        """
        logging.getLogger().setLevel(logging_level)
        if logging_level in {logging.WARNING, logging.ERROR, logging.CRITICAL}:
            set_disable_progressbar(True)

        # setup directories and file names
        experiment_dir_name = None
        if model_resume_path is not None:
            if os.path.exists(model_resume_path):
                experiment_dir_name = model_resume_path
            else:
                logging.info('Model resume path does not exists,'
                             ' starting training from scratch')
                model_resume_path = None
        if model_resume_path is None:
            experiment_dir_name = get_experiment_dir_name(
                output_directory, '', model_name)
        description_fn, training_stats_fn, model_dir = get_file_names(
            experiment_dir_name)

        # save description
        description = get_experiment_description(
            self.model_definition,
            dataset_type,
            data_csv=data_csv,
            data_train_csv=data_train_csv,
            data_validation_csv=data_validation_csv,
            data_test_csv=data_test_csv,
            data_hdf5=data_hdf5,
            data_train_hdf5=data_train_hdf5,
            data_validation_hdf5=data_validation_hdf5,
            data_test_hdf5=data_test_hdf5,
            metadata_json=train_set_metadata_json,
            random_seed=random_seed)

        save_json(description_fn, description)

        # print description
        logging.info('Model name: {}'.format(model_name))
        logging.info('Output path: {}'.format(experiment_dir_name))
        logging.info('\n')
        for key, value in description.items():
            logging.info('{0}: {1}'.format(key, pformat(value, indent=4)))
        logging.info('\n')

        # preprocess
        if data_df is not None or data_train_df is not None:
            (training_set, validation_set, test_set,
             train_set_metadata) = preprocess_for_training(
                 self.model_definition,
                 dataset_type,
                 data_df=data_df,
                 data_train_df=data_train_df,
                 data_validation_df=data_validation_df,
                 data_test_df=data_test_df,
                 train_set_metadata_json=train_set_metadata_json,
                 skip_save_processed_input=True,
                 preprocessing_params=self.model_definition['preprocessing'],
                 random_seed=random_seed)
        else:
            (training_set, validation_set, test_set,
             train_set_metadata) = preprocess_for_training(
                 self.model_definition,
                 dataset_type,
                 data_csv=data_csv,
                 data_train_csv=data_train_csv,
                 data_validation_csv=data_validation_csv,
                 data_test_csv=data_test_csv,
                 data_hdf5=data_hdf5,
                 data_train_hdf5=data_train_hdf5,
                 data_validation_hdf5=data_validation_hdf5,
                 data_test_hdf5=data_test_hdf5,
                 train_set_metadata_json=train_set_metadata_json,
                 skip_save_processed_input=skip_save_processed_input,
                 preprocessing_params=self.model_definition['preprocessing'],
                 random_seed=random_seed)

        logging.info('Training set: {0}'.format(training_set.size))
        if validation_set is not None:
            logging.info('Validation set: {0}'.format(validation_set.size))
        if test_set is not None:
            logging.info('Test set: {0}'.format(test_set.size))

        # update model definition with metadata properties
        update_model_definition_with_metadata(self.model_definition,
                                              train_set_metadata)

        if not skip_save_model:
            os.makedirs(model_dir, exist_ok=True)
            train_set_metadata_path = os.path.join(
                model_dir, TRAIN_SET_METADATA_FILE_NAME)
            save_json(train_set_metadata_path, train_set_metadata)

        # run the experiment
        model, result = train(training_set=training_set,
                              validation_set=validation_set,
                              test_set=test_set,
                              model_definition=self.model_definition,
                              save_path=model_dir,
                              model_load_path=model_load_path,
                              resume=model_resume_path is not None,
                              skip_save_model=skip_save_model,
                              skip_save_progress=skip_save_progress,
                              skip_save_log=skip_save_log,
                              gpus=gpus,
                              gpu_fraction=gpu_fraction,
                              random_seed=random_seed,
                              debug=debug)

        train_trainset_stats, train_valisest_stats, train_testset_stats = result
        train_stats = {
            'train': train_trainset_stats,
            'validation': train_valisest_stats,
            'test': train_testset_stats
        }

        # save training and test statistics
        save_json(training_stats_fn, train_stats)

        # grab the results of the model with highest validation test performance
        md_training = self.model_definition['training']
        validation_field = md_training['validation_field']
        validation_measure = md_training['validation_measure']
        validation_field_result = train_valisest_stats[validation_field]

        best_function = get_best_function(validation_measure)

        # print results of the model with highest validation test performance
        if validation_set is not None:
            # max or min depending on the measure
            epoch_best_vali_measure, best_vali_measure = best_function(
                enumerate(validation_field_result[validation_measure]),
                key=lambda pair: pair[1])
            logging.info('Best validation model epoch: {0}'.format(
                epoch_best_vali_measure + 1))
            logging.info(
                'Best validation model {0} on validation set {1}: {2}'.format(
                    validation_measure, validation_field, best_vali_measure))

            if test_set is not None:
                best_vali_measure_epoch_test_measure = train_testset_stats[
                    validation_field][validation_measure][
                        epoch_best_vali_measure]
                logging.info(
                    'Best validation model {0} on test set {1}: {2}'.format(
                        validation_measure, validation_field,
                        best_vali_measure_epoch_test_measure))

        logging.info('Finished: {0}'.format(model_name))
        logging.info('Saved to {0}:'.format(experiment_dir_name))

        # set parameters
        self.model = model
        self.train_set_metadata = train_set_metadata

        return train_stats
Beispiel #8
0
def test_experiment_image_dataset(train_format, train_in_memory, test_format,
                                  test_in_memory):
    # primary focus of this test is to determine if exceptions are
    # raised for different data set formats and in_memory setting
    # Image Inputs
    image_dest_folder = os.path.join(os.getcwd(), 'generated_images')

    input_features = [
        image_feature(folder=image_dest_folder,
                      encoder='stacked_cnn',
                      preprocessing={
                          'in_memory': True,
                          'height': 12,
                          'width': 12,
                          'num_channels': 3,
                          'num_processes': 5
                      },
                      fc_size=16,
                      num_filters=8),
    ]
    output_features = [
        category_feature(vocab_size=2, reduce_input='sum'),
    ]

    config = {
        'input_features': input_features,
        'output_features': output_features,
        'combiner': {
            'type': 'concat',
            'fc_size': 14
        },
        'preprocessing': {},
        'training': {
            'epochs': 2
        }
    }

    # create temporary name for train and test data sets
    train_csv_filename = 'train_' + uuid.uuid4().hex[:10].upper() + '.csv'
    test_csv_filename = 'test_' + uuid.uuid4().hex[:10].upper() + '.csv'

    # setup training data format to test
    train_data = generate_data(input_features, output_features,
                               train_csv_filename)
    config['input_features'][0]['preprocessing']['in_memory'] \
        = train_in_memory
    training_set_metadata = None

    if train_format == 'hdf5':
        # hdf5 format
        train_set, _, _, training_set_metadata = preprocess_for_training(
            config, dataset=train_data)
        train_dataset_to_use = train_set.data_hdf5_fp
    else:
        train_dataset_to_use = create_data_set_to_use(train_format, train_data)

    # define Ludwig model
    model = LudwigModel(config=config, )
    model.train(dataset=train_dataset_to_use,
                training_set_metadata=training_set_metadata)

    model.config['input_features'][0]['preprocessing']['in_memory'] \
        = test_in_memory

    # setup test data format to test
    test_data = generate_data(input_features, output_features,
                              test_csv_filename)

    if test_format == 'hdf5':
        # hdf5 format
        # create hdf5 data set
        _, test_set, _, training_set_metadata_for_test = preprocess_for_training(
            model.config, dataset=test_data)
        test_dataset_to_use = test_set.data_hdf5_fp
    else:
        test_dataset_to_use = create_data_set_to_use(test_format, test_data)

    # run functions with the specified data format
    model.evaluate(dataset=test_dataset_to_use)
    model.predict(dataset=test_dataset_to_use)

    # Delete the temporary data created
    shutil.rmtree(image_dest_folder)
    delete_temporary_data(train_csv_filename)
    delete_temporary_data(test_csv_filename)
Beispiel #9
0
def test_experiment_image_dataset(train_format, train_in_memory, test_format,
                                  test_in_memory, tmpdir):
    # Image Inputs
    image_dest_folder = os.path.join(tmpdir, "generated_images")

    input_features = [
        image_feature(
            folder=image_dest_folder,
            encoder="stacked_cnn",
            preprocessing={
                "in_memory": True,
                "height": 12,
                "width": 12,
                "num_channels": 3,
                "num_processes": 5
            },
            output_size=16,
            num_filters=8,
        ),
    ]
    output_features = [
        category_feature(vocab_size=2, reduce_input="sum"),
    ]

    config = {
        "input_features": input_features,
        "output_features": output_features,
        "combiner": {
            "type": "concat",
            "output_size": 14
        },
        "preprocessing": {},
        TRAINER: {
            "epochs": 2
        },
    }

    # create temporary name for train and test data sets
    train_csv_filename = os.path.join(
        tmpdir, "train_" + uuid.uuid4().hex[:10].upper() + ".csv")
    test_csv_filename = os.path.join(
        tmpdir, "test_" + uuid.uuid4().hex[:10].upper() + ".csv")

    # setup training data format to test
    train_data = generate_data(input_features, output_features,
                               train_csv_filename)
    config["input_features"][0]["preprocessing"]["in_memory"] = train_in_memory
    training_set_metadata = None

    backend = LocalTestBackend()
    if train_format == "hdf5":
        # hdf5 format
        train_set, _, _, training_set_metadata = preprocess_for_training(
            config,
            dataset=train_data,
            backend=backend,
        )
        train_dataset_to_use = train_set.data_hdf5_fp
    else:
        train_dataset_to_use = create_data_set_to_use(train_format, train_data)

    # define Ludwig model
    model = LudwigModel(
        config=config,
        backend=backend,
    )
    model.train(dataset=train_dataset_to_use,
                training_set_metadata=training_set_metadata)

    model.config["input_features"][0]["preprocessing"][
        "in_memory"] = test_in_memory

    # setup test data format to test
    test_data = generate_data(input_features, output_features,
                              test_csv_filename)

    if test_format == "hdf5":
        # hdf5 format
        # create hdf5 data set
        _, test_set, _, training_set_metadata_for_test = preprocess_for_training(
            model.config,
            dataset=test_data,
            backend=backend,
        )
        test_dataset_to_use = test_set.data_hdf5_fp
    else:
        test_dataset_to_use = create_data_set_to_use(test_format, test_data)

    # run functions with the specified data format
    model.evaluate(dataset=test_dataset_to_use)
    model.predict(dataset=test_dataset_to_use)
Beispiel #10
0
def test_decoder(test_case):
    # reproducible synthetic data set
    np.random.seed(RANDOM_SEED)
    tf.random.set_seed(RANDOM_SEED)

    # create synthetic data for the test
    features = [
        test_case.syn_data.feature_generator(
            *test_case.syn_data.feature_generator_args,
            **test_case.syn_data.feature_generator_kwargs
        )
    ]
    feature_name = features[0]['name']
    data_generator = build_synthetic_dataset(BATCH_SIZE, features)
    data_list = list(data_generator)
    raw_data = [x[0] for x in data_list[1:]]
    df = pd.DataFrame({data_list[0][0]: raw_data})

    # create synthetic combiner layer
    combiner_outputs_rank2 = {
        'combiner_output': tf.random.normal(
            [BATCH_SIZE, HIDDEN_SIZE],
            dtype=tf.float32
        )
    }

    combiner_outputs_rank3 = {
        'combiner_output': tf.random.normal(
            [BATCH_SIZE, SEQ_SIZE, HIDDEN_SIZE],
            dtype=tf.float32
        ),
        'encoder_output_state': tf.random.normal(
            [BATCH_SIZE, HIDDEN_SIZE],
            dtype=tf.float32
        ),
        'lengths': tf.convert_to_tensor(
            np.array(BATCH_SIZE * [SEQ_SIZE]),
            dtype=tf.int32
        )
    }

    # minimal config sufficient to create output feature
    config = {'input_features': [], 'output_features': features}
    training_set, _, _, training_set_metadata = preprocess_for_training(
        config,
        training_set=df,
        skip_save_processed_input=True,
        random_seed=RANDOM_SEED
    )

    # run through each type of regularizer
    regularizer_losses = []
    for regularizer in [None, 'l1', 'l2', 'l1_l2']:
        # start with clean slate and make reproducible
        tf.keras.backend.clear_session()
        np.random.seed(RANDOM_SEED)
        tf.random.set_seed(RANDOM_SEED)

        # setup kwarg for regularizer parms
        x_coder_kwargs = dict(
            zip(test_case.regularizer_parm_names,
                len(test_case.regularizer_parm_names) * [regularizer])
        )

        # combine other other keyword parameters
        x_coder_kwargs.update(test_case.XCoder_other_parms)

        features[0].update(x_coder_kwargs)
        if features[0]['type'] in SEQUENCE_TYPES:
            features[0]['num_classes'] = training_set_metadata[feature_name][
                                             'vocab_size'] + 1
            training_set.dataset[feature_name] = \
                training_set.dataset[feature_name].astype(np.int32)
            combiner_outputs = combiner_outputs_rank3
        else:
            combiner_outputs = combiner_outputs_rank2

        output_def_obj = build_single_output(features[0], None, None)

        targets = training_set.dataset[feature_name]
        if len(targets.shape) == 1:
            targets = targets.reshape(-1, 1)

        output_def_obj(
            (
                (combiner_outputs, None),
                targets
            ),
            training=True,
            mask=None
        )
        regularizer_loss = tf.reduce_sum(output_def_obj.decoder_obj.losses)
        regularizer_losses.append(regularizer_loss)

    # check loss regularization loss values
    # None should be zero
    assert regularizer_losses[0] == 0

    # l1, l2 and l1_l2 should be greater than zero
    assert np.all([t > 0.0 for t in regularizer_losses[1:]])

    # # using default setting l1 + l2 == l1_l2 losses
    assert np.isclose(
        regularizer_losses[1].numpy() + regularizer_losses[2].numpy(),
        regularizer_losses[3].numpy())
Beispiel #11
0
def test_encoder(test_case):
    # set up required directories for images if needed
    shutil.rmtree(IMAGE_DIR, ignore_errors=True)
    os.mkdir(IMAGE_DIR)

    # reproducible synthetic data set
    np.random.seed(RANDOM_SEED)
    tf.random.set_seed(RANDOM_SEED)

    # create synthetic data for the test
    features = [
        test_case.syn_data.feature_generator(
            *test_case.syn_data.feature_generator_args,
            **test_case.syn_data.feature_generator_kwargs
        )
    ]
    feature_name = features[0]['name']
    data_generator = build_synthetic_dataset(BATCH_SIZE, features)
    data_list = list(data_generator)
    raw_data = [x[0] for x in data_list[1:]]
    df = pd.DataFrame({data_list[0][0]: raw_data})

    # minimal config sufficient to create the input feature
    config = {'input_features': features, 'output_features': []}
    training_set, _, _, training_set_metadata = preprocess_for_training(
        config,
        training_set=df,
        skip_save_processed_input=True,
        random_seed=RANDOM_SEED
    )

    # run through each type of regularizer for the encoder
    regularizer_losses = []
    for regularizer in [None, 'l1', 'l2', 'l1_l2']:
        # start with clean slate and make reproducible
        tf.keras.backend.clear_session()
        np.random.seed(RANDOM_SEED)
        tf.random.set_seed(RANDOM_SEED)

        # setup kwarg for regularizer parms
        x_coder_kwargs = dict(
            zip(test_case.regularizer_parm_names,
                len(test_case.regularizer_parm_names) * [regularizer])
        )

        # combine other other keyword parameters
        x_coder_kwargs.update(test_case.XCoder_other_parms)
        features[0].update(x_coder_kwargs)

        # shim code to support sequence/sequence like features
        if features[0]['type'] in SEQUENCE_TYPES.union({'category', 'set'}):
            features[0]['vocab'] = training_set_metadata[feature_name][
                'idx2str']
            training_set.dataset[feature_name] = \
                training_set.dataset[feature_name].astype(np.int32)

        input_def_obj = build_single_input(features[0], None)

        inputs = training_set.dataset[feature_name]
        # make sure we are at least rank 2 tensor
        if len(inputs.shape) == 1:
            inputs = inputs.reshape(-1, 1)

        # special handling for image feature
        if features[0]['type'] == 'image':
            inputs = tf.cast(inputs, tf.float32) / 255

        input_def_obj.encoder_obj(inputs)
        regularizer_loss = tf.reduce_sum(input_def_obj.encoder_obj.losses)
        regularizer_losses.append(regularizer_loss)

    # check loss regularization loss values
    # None should be zero
    assert regularizer_losses[0] == 0

    # l1, l2 and l1_l2 should be greater than zero
    assert np.all([t > 0.0 for t in regularizer_losses[1:]])

    # # using default setting l1 + l2 == l1_l2 losses
    assert np.isclose(
        regularizer_losses[1].numpy() + regularizer_losses[2].numpy(),
        regularizer_losses[3].numpy())

    # cleanup
    shutil.rmtree(IMAGE_DIR, ignore_errors=True)
Beispiel #12
0
def get_trainingset_metadata(config, dataset):
    (_, _, _, training_set_metadata) = preprocess_for_training(
        config, dataset=dataset, preprocessing_params=config[PREPROCESSING])
    return training_set_metadata
Beispiel #13
0
    def train(
            self,
            dataset=None,
            training_set=None,
            validation_set=None,
            test_set=None,
            training_set_metadata=None,
            data_format=None,
            experiment_name='api_experiment',
            model_name='run',
            model_resume_path=None,
            skip_save_training_description=False,
            skip_save_training_statistics=False,
            skip_save_model=False,
            skip_save_progress=False,
            skip_save_log=False,
            skip_save_processed_input=False,
            output_directory='results',
            random_seed=default_random_seed,
            debug=False,
            **kwargs
    ):
        """This function is used to perform a full training of the model on the
           specified dataset.

        # Inputs

        :param dataset: (string, dict, DataFrame) source containing the entire dataset.
               If it has a split column, it will be used for splitting (0: train,
               1: validation, 2: test), otherwise the dataset will be randomly split.
        :param training_set: (string, dict, DataFrame) source containing training data.
        :param validation_set: (string, dict, DataFrame) source containing validation data.
        :param test_set: (string, dict, DataFrame) source containing test data.
        :param training_set_metadata: (string, dict) metadata JSON file or loaded metadata.
               Intermediate preprocess structure containing the mappings of the input
               CSV created the first time a CSV file is used in the same
               directory with the same name and a '.json' extension.
        :param data_format: (string) format to interpret data sources. Will be inferred
               automatically if not specified.
        :param experiment_name: (string) a name for the experiment, used for the save
               directory
        :param model_name: (string) a name for the model, used for the save
               directory
        :param model_resume_path: (string) path of a the model directory to
               resume training of
        :param skip_save_training_description: (bool, default: `False`) disables
               saving the description JSON file.
        :param skip_save_training_statistics: (bool, default: `False`) disables
               saving training statistics JSON file.
        :param skip_save_model: (bool, default: `False`) disables
               saving model weights and hyperparameters each time the model
               improves. By default Ludwig saves model weights after each epoch
               the validation metric imrpvoes, but if the model is really big
               that can be time consuming if you do not want to keep
               the weights and just find out what performance can a model get
               with a set of hyperparameters, use this parameter to skip it,
               but the model will not be loadable later on.
        :param skip_save_progress: (bool, default: `False`) disables saving
               progress each epoch. By default Ludwig saves weights and stats
               after each epoch for enabling resuming of training, but if
               the model is really big that can be time consuming and will uses
               twice as much space, use this parameter to skip it, but training
               cannot be resumed later on.
        :param skip_save_log: (bool, default: `False`) disables saving TensorBoard
               logs. By default Ludwig saves logs for the TensorBoard, but if it
               is not needed turning it off can slightly increase the
               overall speed.
        :param skip_save_processed_input: (bool, default: `False`) skips saving
               intermediate HDF5 and JSON files
        :param output_directory: (string, default: `'results'`) directory that
               contains the results
        :param random_seed: (int, default`42`) a random seed that is going to be
               used anywhere there is a call to a random number generator: data
               splitting, parameter initialization and training set shuffling
        :param debug: (bool, default: `False`) enables debugging mode

        There are three ways to provide data: by dataframes using the `_df`
        parameters, by CSV using the `_csv` parameters and by HDF5 and JSON,
        using `_hdf5` and `_json` parameters.
        The DataFrame approach uses data previously obtained and put in a
        dataframe, the CSV approach loads data from a CSV file, while HDF5 and
        JSON load previously preprocessed HDF5 and JSON files (they are saved in
        the same directory of the CSV they are obtained from).
        For all three approaches either a full dataset can be provided (which
        will be split randomly according to the split probabilities defined in
        the model definition, by default 70% training, 10% validation and 20%
        test) or, if it contanins a plit column, it will be plit according to
        that column (interpreting 0 as training, 1 as validation and 2 as test).
        Alternatively separated dataframes / CSV / HDF5 files can beprovided
        for each split.

        During training the model and statistics will be saved in a directory
        `[output_dir]/[experiment_name]_[model_name]_n` where all variables are
        resolved to user spiecified ones and `n` is an increasing number
        starting from 0 used to differentiate different runs.


        # Return

        :return: ((dict, DataFrame)) tuple containing:
            - A dictionary of training statistics for each output feature containing
              loss and metrics values for each epoch. The second return
            - A Pandas DataFrame of preprocessed training data.
        """
        # setup directories and file names
        if model_resume_path is not None:
            if os.path.exists(model_resume_path):
                output_directory = model_resume_path
            else:
                if is_on_master():
                    logger.info(
                        'Model resume path does not exists, '
                        'starting training from scratch'
                    )
                model_resume_path = None

        if model_resume_path is None:
            if is_on_master():
                output_directory = get_output_directory(
                    output_directory,
                    experiment_name,
                    model_name
                )
            else:
                output_directory = None

        # if we are skipping all saving,
        # there is no need to create a directory that will remain empty
        should_create_output_directory = not (
                skip_save_training_description and
                skip_save_training_statistics and
                skip_save_model and
                skip_save_progress and
                skip_save_log and
                skip_save_processed_input
        )

        description_fn = training_stats_fn = model_dir = None
        if is_on_master():
            if should_create_output_directory:
                if not os.path.exists(output_directory):
                    os.makedirs(output_directory, exist_ok=True)
            description_fn, training_stats_fn, model_dir = get_file_names(
                output_directory)

        # save description
        if is_on_master():
            description = get_experiment_description(
                self.model_definition,
                dataset=dataset,
                training_set=training_set,
                validation_set=validation_set,
                test_set=test_set,
                training_set_metadata=training_set_metadata,
                data_format=data_format,
                random_seed=random_seed
            )
            if not skip_save_training_description:
                save_json(description_fn, description)
            # print description
            logger.info('Experiment name: {}'.format(experiment_name))
            logger.info('Model name: {}'.format(model_name))
            logger.info('Output directory: {}'.format(output_directory))
            logger.info('\n')
            for key, value in description.items():
                logger.info('{}: {}'.format(key, pformat(value, indent=4)))
            logger.info('\n')

        # preprocess
        preprocessed_data = preprocess_for_training(
            self.model_definition,
            dataset=dataset,
            training_set=training_set,
            validation_set=validation_set,
            test_set=test_set,
            training_set_metadata=training_set_metadata,
            data_format=data_format,
            skip_save_processed_input=skip_save_processed_input,
            preprocessing_params=self.model_definition[PREPROCESSING],
            random_seed=random_seed
        )

        (training_set,
         validation_set,
         test_set,
         training_set_metadata) = preprocessed_data
        self.training_set_metadata = training_set_metadata

        if is_on_master():
            logger.info('Training set: {0}'.format(training_set.size))
            if validation_set is not None:
                logger.info('Validation set: {0}'.format(validation_set.size))
            if test_set is not None:
                logger.info('Test set: {0}'.format(test_set.size))

        if is_on_master():
            if not skip_save_model:
                # save train set metadata
                os.makedirs(model_dir, exist_ok=True)
                save_json(
                    os.path.join(
                        model_dir,
                        TRAIN_SET_METADATA_FILE_NAME
                    ),
                    training_set_metadata
                )

        contrib_command("train_init", experiment_directory=output_directory,
                        experiment_name=experiment_name, model_name=model_name,
                        output_directory=output_directory,
                        resume=model_resume_path is not None)

        # Build model if not provided
        # if it was provided it means it was already loaded
        if not self.model:
            if is_on_master():
                print_boxed('MODEL', print_fun=logger.debug)
            # update model definition with metadata properties
            update_model_definition_with_metadata(
                self.model_definition,
                training_set_metadata
            )
            self.model = LudwigModel.create_model(self.model_definition,
                                                  random_seed=random_seed)

        # init trainer
        trainer = Trainer(
            **self.model_definition[TRAINING],
            resume=model_resume_path is not None,
            skip_save_model=skip_save_model,
            skip_save_progress=skip_save_progress,
            skip_save_log=skip_save_log,
            random_seed=random_seed,
            horoovd=self._horovod,
            debug=debug
        )

        contrib_command("train_model", self.model, self.model_definition,
                        self.model_definition_fp)

        # train model
        if is_on_master():
            print_boxed('TRAINING')
            if not skip_save_model:
                self.save_model_definition(model_dir)

        train_stats = trainer.train(
            self.model,
            training_set,
            validation_set=validation_set,
            test_set=test_set,
            save_path=model_dir,
        )

        train_trainset_stats, train_valiset_stats, train_testset_stats = train_stats
        train_stats = {
            TRAINING: train_trainset_stats,
            VALIDATION: train_valiset_stats,
            TEST: train_testset_stats
        }

        # save training statistics
        if is_on_master():
            if not skip_save_training_statistics:
                save_json(training_stats_fn, train_stats)

        # grab the results of the model with highest validation test performance
        validation_field = trainer.validation_field
        validation_metric = trainer.validation_metric
        validation_field_result = train_valiset_stats[validation_field]

        best_function = get_best_function(validation_metric)
        # results of the model with highest validation test performance
        if is_on_master() and validation_set is not None:
            epoch_best_vali_metric, best_vali_metric = best_function(
                enumerate(validation_field_result[validation_metric]),
                key=lambda pair: pair[1]
            )
            logger.info(
                'Best validation model epoch: {0}'.format(
                    epoch_best_vali_metric + 1)
            )
            logger.info(
                'Best validation model {0} on validation set {1}: {2}'.format(
                    validation_metric, validation_field, best_vali_metric
                ))
            if test_set is not None:
                best_vali_metric_epoch_test_metric = train_testset_stats[
                    validation_field][validation_metric][
                    epoch_best_vali_metric]

                logger.info(
                    'Best validation model {0} on test set {1}: {2}'.format(
                        validation_metric,
                        validation_field,
                        best_vali_metric_epoch_test_metric
                    )
                )
            logger.info(
                '\nFinished: {0}_{1}'.format(experiment_name, model_name))
            logger.info('Saved to: {0}'.format(output_directory))

        contrib_command("train_save", output_directory)

        self.training_set_metadata = training_set_metadata

        if not skip_save_model:
            # Load the best weights from saved checkpoint
            self.load_weights(model_dir)

        return train_stats, preprocessed_data, output_directory
Beispiel #14
0
def experiment(
        model_definition,
        model_definition_file=None,
        data_csv=None,
        data_train_csv=None,
        data_validation_csv=None,
        data_test_csv=None,
        data_hdf5=None,
        data_train_hdf5=None,
        data_validation_hdf5=None,
        data_test_hdf5=None,
        train_set_metadata_json=None,
        experiment_name='experiment',
        model_name='run',
        model_load_path=None,
        model_resume_path=None,
        skip_save_progress_weights=False,
        skip_save_processed_input=False,
        skip_save_unprocessed_output=False,
        output_directory='results',
        gpus=None,
        gpu_fraction=1.0,
        use_horovod=False,
        random_seed=default_random_seed,
        debug=False,
        **kwargs
):
    """Trains a model on a dataset's training and validation splits and
    uses it to predict on the test split.
    It saves the trained model and the statistics of training and testing.
    :param model_definition: Model definition which defines the different
           parameters of the model, features, preprocessing and training.
    :type model_definition: Dictionary
    :param model_definition_file: The file that specifies the model definition.
           It is a yaml file.
    :type model_definition_file: filepath (str)
    :param data_csv: A CSV file contanining the input data which is used to
           train, validate and test a model. The CSV either contains a
           split column or will be split.
    :type data_csv: filepath (str)
    :param data_train_csv: A CSV file contanining the input data which is used
           to train a model.
    :type data_train_csv: filepath (str)
    :param data_validation_csv: A CSV file contanining the input data which is used
           to validate a model..
    :type data_validation_csv: filepath (str)
    :param data_test_csv: A CSV file contanining the input data which is used
           to test a model.
    :type data_test_csv: filepath (str)
    :param data_hdf5: If the dataset is in the hdf5 format, this is used instead
           of the csv file.
    :type data_hdf5: filepath (str)
    :param data_train_hdf5: If the training set is in the hdf5 format, this is
           used instead of the csv file.
    :type data_train_hdf5: filepath (str)
    :param data_validation_hdf5: If the validation set is in the hdf5 format,
           this is used instead of the csv file.
    :type data_validation_hdf5: filepath (str)
    :param data_test_hdf5: If the test set is in the hdf5 format, this is
           used instead of the csv file.
    :type data_test_hdf5: filepath (str)
    :param train_set_metadata_json: If the dataset is in hdf5 format, this is
           the associated json file containing metadata.
    :type train_set_metadata_json: filepath (str)
    :param experiment_name: The name for the experiment.
    :type experiment_name: Str
    :param model_name: Name of the model that is being used.
    :type model_name: Str
    :param model_load_path: If this is specified the loaded model will be used
           as initialization (useful for transfer learning).
    :type model_load_path: filepath (str)
    :param model_resume_path: Resumes training of the model from the path
           specified. The difference with model_load_path is that also training
           statistics like the current epoch and the loss and performance so
           far are also resumed effectively cotinuing a previously interrupted
           training process.
    :type model_resume_path: filepath (str)
    :param skip_save_progress_weights: Skips saving the weights at the end of
           each epoch. If this is true, training cannot be resumed from the
           exactly the state at the end of the previous epoch.
    :type skip_save_progress_weights: Boolean
    :param skip_save_processed_input: If a CSV dataset is provided it is
           preprocessed and then saved as an hdf5 and json to avoid running
           the preprocessing again. If this parameter is False,
           the hdf5 and json file are not saved.
    :type skip_save_processed_input: Boolean
    :param skip_save_unprocessed_output: By default predictions and
           their probabilities are saved in both raw unprocessed numpy files
           contaning tensors and as postprocessed CSV files
           (one for each output feature). If this parameter is True,
           only the CSV ones are saved and the numpy ones are skipped.
    :type skip_save_unprocessed_output: Boolean
    :param output_directory: The directory that will contanin the training
           statistics, the saved model and the training procgress files.
    :type output_directory: filepath (str)
    :param gpus: List of GPUs that are available for training.
    :type gpus: List
    :param gpu_fraction: Fraction of the memory of each GPU to use at
           the beginning of the training. The memory may grow elastically.
    :type gpu_fraction: Integer
    :param random_seed: Random seed used for weights initialization,
           splits and any other random function.
    :type random_seed: Integer
    :param debug: If true turns on tfdbg with inf_or_nan checks.
    :type debug: Boolean
    """
    # set input features defaults
    if model_definition_file is not None:
        with open(model_definition_file, 'r') as def_file:
            model_definition = merge_with_defaults(yaml.load(def_file))
    else:
        model_definition = merge_with_defaults(model_definition)

    # setup directories and file names
    experiment_dir_name = None
    if model_resume_path is not None:
        if os.path.exists(model_resume_path):
            experiment_dir_name = model_resume_path
        else:
            if is_on_master():
                logging.info(
                    'Model resume path does not exists, '
                    'starting training from scratch'
                )
            model_resume_path = None

    if model_resume_path is None:
        if is_on_master():
            experiment_dir_name = get_experiment_dir_name(
                output_directory,
                experiment_name,
                model_name
            )
        else:
            experiment_dir_name = '/'
    description_fn, training_stats_fn, model_dir = get_file_names(
        experiment_dir_name
    )

    # save description
    description = get_experiment_description(
        model_definition,
        data_csv,
        data_train_csv,
        data_validation_csv,
        data_test_csv,
        data_hdf5,
        data_train_hdf5,
        data_validation_hdf5,
        data_test_hdf5,
        train_set_metadata_json,
        random_seed
    )
    if is_on_master():
        save_json(description_fn, description)
        # print description
        logging.info('Experiment name: {}'.format(experiment_name))
        logging.info('Model name: {}'.format(model_name))
        logging.info('Output path: {}'.format(experiment_dir_name))
        logging.info('')
        for key, value in description.items():
            logging.info('{}: {}'.format(key, pformat(value, indent=4)))
        logging.info('')

    # preprocess
    (
        training_set,
        validation_set,
        test_set,
        train_set_metadata
    ) = preprocess_for_training(
        model_definition,
        data_csv=data_csv,
        data_train_csv=data_train_csv,
        data_validation_csv=data_validation_csv,
        data_test_csv=data_test_csv,
        data_hdf5=data_hdf5,
        data_train_hdf5=data_train_hdf5,
        data_validation_hdf5=data_validation_hdf5,
        data_test_hdf5=data_test_hdf5,
        train_set_metadata_json=train_set_metadata_json,
        skip_save_processed_input=skip_save_processed_input,
        preprocessing_params=model_definition[
            'preprocessing'],
        random_seed=random_seed
    )
    if is_on_master():
        logging.info('Training set: {0}'.format(training_set.size))
        if validation_set is not None:
            logging.info('Validation set: {0}'.format(validation_set.size))
        if test_set is not None:
            logging.info('Test set: {0}'.format(test_set.size))

    # update model definition with metadata properties
    update_model_definition_with_metadata(model_definition, train_set_metadata)

    # run the experiment
    model, training_results = train(
        training_set=training_set,
        validation_set=validation_set,
        test_set=test_set,
        model_definition=model_definition,
        save_path=model_dir,
        model_load_path=model_load_path,
        resume=model_resume_path is not None,
        skip_save_progress_weights=skip_save_progress_weights,
        gpus=gpus,
        gpu_fraction=gpu_fraction,
        use_horovod=use_horovod,
        random_seed=random_seed,
        debug=debug
    )
    (
        train_trainset_stats,
        train_valisest_stats,
        train_testset_stats
    ) = training_results

    if is_on_master():
        # save train set metadata
        save_json(
            os.path.join(
                model_dir,
                TRAIN_SET_METADATA_FILE_NAME
            ),
            train_set_metadata
        )

    # grab the results of the model with highest validation test performance
    validation_field = model_definition['training']['validation_field']
    validation_measure = model_definition['training']['validation_measure']
    validation_field_result = train_valisest_stats[validation_field]

    best_function = get_best_function(validation_measure)

    # print results of the model with highest validation test performance
    if is_on_master():
        if validation_set is not None:
            # max or min depending on the measure
            epoch_best_vali_measure, best_vali_measure = best_function(
                enumerate(validation_field_result[validation_measure]),
                key=lambda pair: pair[1]
            )
            logging.info('Best validation model epoch: {0}'.format(
                epoch_best_vali_measure + 1)
            )
            logging.info(
                'Best validation model {0} on validation set {1}: {2}'.format(
                    validation_measure,
                    validation_field,
                    best_vali_measure)
            )
        
            if test_set is not None:
                best_vali_measure_epoch_test_measure = train_testset_stats[
                    validation_field
                ][validation_measure][epoch_best_vali_measure]
                logging.info(
                    'Best validation model {0} on test set {1}: {2}'.format(
                        validation_measure,
                        validation_field,
                        best_vali_measure_epoch_test_measure
                    )
                )

    # save training statistics
    if is_on_master():
        save_json(
            training_stats_fn,
            {
                'train': train_trainset_stats,
                'validation': train_valisest_stats,
                'test': train_testset_stats
            }
        )

    
    if test_set is not None:
        # predict
        test_results = predict(
            test_set,
            train_set_metadata,
            model,
            model_definition,
            model_definition['training']['batch_size'],
            only_predictions=False,
            gpus=gpus,
            gpu_fraction=gpu_fraction,
            debug=debug
        )
        # postprocess
        postprocessed_output = postprocess(
            test_results,
            model_definition['output_features'],
            train_set_metadata,
            experiment_dir_name,
            skip_save_unprocessed_output or not is_on_master()
        )

        if is_on_master():
            print_prediction_results(test_results)

            save_prediction_outputs(postprocessed_output, experiment_dir_name)
            save_prediction_statistics(test_results, experiment_dir_name)
    
    model.close_session()

    if is_on_master():
        logging.info('\nFinished: {0}_{1}'.format(
            experiment_name, model_name))
        logging.info('Saved to: {}'.format(experiment_dir_name))

    return experiment_dir_name