def symmM_to_posdefM(A = None, atol = 1.0e-9, rtol = 1.0e-9, method = 'make', forcesymm = True): """ Convert a symmetric matrix to a positive definite one. Args: :A: | ndarray :atol: | float, optional | The absolute tolerance parameter (see Notes of numpy.allclose()) :rtol: | float, optional | The relative tolerance parameter (see Notes of numpy.allclose()) :method: | 'make' or 'nearest', optional (see notes for more info) :forcesymm: | True or False, optional | If A is not symmetric, force symmetry using: | A = numpy.triu(A) + numpy.triu(A).T - numpy.diag(numpy.diag(A)) Returns: :returns: | ndarray with positive-definite matrix. Notes on supported methods: 1. `'make': A Python/Numpy port of Muhammad Asim Mubeen's matlab function Spd_Mat.m <https://nl.mathworks.com/matlabcentral/fileexchange/45873-positive-definite-matrix>`_ 2. `'nearest': A Python/Numpy port of John D'Errico's `nearestSPD` MATLAB code. <https://stackoverflow.com/questions/43238173/python-convert-matrix-to-positive-semi-definite>`_ """ if A is not None: A = np2d(A) # Make sure matrix A is symmetric up to a certain tolerance: sn = check_symmetric(A, atol = atol, rtol = rtol) if ((A.shape[0] != A.shape[1]) | (sn != True)): if (forcesymm == True) & (A.shape[0] == A.shape[1]): A = np.triu(A) + np.triu(A).T - np.diag(np.diag(A)) else: raise Exception('symmM_to_posdefM(): matrix A not symmetric.') if check_posdef(A, atol = atol, rtol = rtol) == True: return A else: if method == 'make': # A Python/Numpy port of Muhammad Asim Mubeen's matlab function Spd_Mat.m # # See: https://nl.mathworks.com/matlabcentral/fileexchange/45873-positive-definite-matrix Val, Vec = np.linalg.eig(A) Val = np.real(Val) Vec = np.real(Vec) Val[np.where(Val==0)] = _EPS #making zero eigenvalues non-zero p = np.where(Val<0) Val[p] = -Val[p] #making negative eigenvalues positive return np.dot(Vec,np.dot(np.diag(Val) , Vec.T)) elif method == 'nearest': # A Python/Numpy port of John D'Errico's `nearestSPD` MATLAB code [1], which # credits [2]. # # [1] https://www.mathworks.com/matlabcentral/fileexchange/42885-nearestspd # # [2] N.J. Higham, "Computing a nearest symmetric positive semidefinite # matrix" (1988): https://doi.org/10.1016/0024-3795(88)90223-6 # # See: https://stackoverflow.com/questions/43238173/python-convert-matrix-to-positive-semi-definite B = (A + A.T) / 2.0 _, s, V = np.linalg.svd(B) H = np.dot(V.T, np.dot(np.diag(s), V)) A2 = (B + H) / 2.0 A3 = (A2 + A2.T) / 2.0 if check_posdef(A3, atol = atol, rtol = rtol) == True: return A3 spacing = np.spacing(np.linalg.norm(A)) I = np.eye(A.shape[0]) k = 1 while not check_posdef(A3, atol = atol, rtol = rtol): mineig = np.min(np.real(np.linalg.eigvals(A3))) A3 += I * (-mineig * k**2.0+ spacing) k += 1 return A3
def cam18sl(data, datab = None, Lb = [100], fov = 10.0, inputtype = 'xyz', direction = 'forward', outin = 'Q,aW,bW', parameters = None): """ Convert between CIE 2006 10° XYZ tristimulus values (or spectral data) and CAM18sl color appearance correlates. Args: :data: | ndarray of CIE 2006 10° absolute XYZ tristimulus values or spectral data or color appearance attributes of stimulus :datab: | ndarray of CIE 2006 10° absolute XYZ tristimulus values or spectral data of stimulus background :Lb: | [100], optional | Luminance (cd/m²) value(s) of background(s) calculated using the CIE 2006 10° CMFs | (only used in case datab == None and the background is assumed to be an Equal-Energy-White) :fov: | 10.0, optional | Field-of-view of stimulus (for size effect on brightness) :inputtpe: | 'xyz' or 'spd', optional | Specifies the type of input: | tristimulus values or spectral data for the forward mode. :direction: | 'forward' or 'inverse', optional | -'forward': xyz -> cam18sl | -'inverse': cam18sl -> xyz :outin: | 'Q,aW,bW' or str, optional | 'Q,aW,bW' (brightness and opponent signals for amount-of-neutral) | other options: 'Q,aM,bM' (colorfulness) and 'Q,aS,bS' (saturation) | Str specifying the type of | input (:direction: == 'inverse') and | output (:direction: == 'forward') :parameters: | None or dict, optional | Set of model parameters. | - None: defaults to luxpy.cam._CAM18SL_PARAMETERS | (see references below) Returns: :returns: | ndarray with color appearance correlates (:direction: == 'forward') | or | XYZ tristimulus values (:direction: == 'inverse') Notes: | * Instead of using the CIE 1964 10° CMFs in some places of the model, | the CIE 2006 10° CMFs are used througout, making it more self_consistent. | This has an effect on the k scaling factors (now different those in CAM15u) | and the illuminant E normalization for use in the chromatic adaptation transform. | (see future erratum to Hermans et al., 2018) | * The paper also used an equation for the amount of white W, which is | based on a Q value not expressed in 'bright' ('cA' = 0.937 instead of 123). | This has been corrected for in the luxpy version of the model, i.e. | _CAM18SL_PARAMETERS['cW'][0] has been changed from 2.29 to 1/11672. | (see future erratum to Hermans et al., 2018) References: 1. `Hermans, S., Smet, K. A. G., & Hanselaer, P. (2018). "Color appearance model for self-luminous stimuli." Journal of the Optical Society of America A, 35(12), 2000–2009. <https://doi.org/10.1364/JOSAA.35.002000>`_ """ if parameters is None: parameters = _CAM18SL_PARAMETERS outin = outin.split(',') #unpack model parameters: cA, cAlms, cHK, cM, cW, ca, calms, cb, cblms, cfov, k, naka, unique_hue_data = [parameters[x] for x in sorted(parameters.keys())] # precomputations: Mlms2xyz = np.linalg.inv(_CMF['2006_10']['M']) MAab = np.array([cAlms,calms,cblms]) invMAab = np.linalg.inv(MAab) #------------------------------------------------- # setup EEW reference field and default background field (Lr should be equal to Lb): # Get Lb values: if datab is not None: if inputtype != 'xyz': Lb = spd_to_xyz(datab, cieobs = '2006_10', relative = False)[...,1:2] else: Lb = datab[...,1:2] else: if isinstance(Lb,list): Lb = np2dT(Lb) # Setup EEW ref of same luminance as datab: if inputtype == 'xyz': wlr = getwlr(_CAM18SL_WL3) else: if datab is None: wlr = data[0] # use wlr of stimulus data else: wlr = datab[0] # use wlr of background data datar = np.vstack((wlr,np.ones((Lb.shape[0], wlr.shape[0])))) # create eew xyzr = spd_to_xyz(datar, cieobs = '2006_10', relative = False) # get abs. tristimulus values datar[1:] = datar[1:]/xyzr[...,1:2]*Lb # Create datab if None: if (datab is None): if inputtype != 'xyz': datab = datar.copy() else: datab = spd_to_xyz(datar, cieobs = '2006_10', relative = False) datar = datab.copy() # prepare data and datab for loop over backgrounds: # make axis 1 of datab have 'same' dimensions as data: if (data.ndim == 2): data = np.expand_dims(data, axis = 1) # add light source axis 1 if inputtype == 'xyz': if datab.shape[0] == 1: #make datab and datar have same lights source dimension (used to store different backgrounds) size as data datab = np.repeat(datab,data.shape[1],axis=0) datar = np.repeat(datar,data.shape[1],axis=0) else: if datab.shape[0] == 2: datab = np.vstack((datab[0],np.repeat(datab[1:], data.shape[1], axis = 0))) if datar.shape[0] == 2: datar = np.vstack((datar[0],np.repeat(datar[1:], data.shape[1], axis = 0))) # Flip light source/ background dim to axis 0: data = np.transpose(data, axes = (1,0,2)) #------------------------------------------------- #initialize camout: dshape = list(data.shape) dshape[-1] = len(outin) # requested number of correlates if (inputtype != 'xyz') & (direction == 'forward'): dshape[-2] = dshape[-2] - 1 # wavelength row doesn't count & only with forward can the input data be spectral camout = np.nan*np.ones(dshape) for i in range(data.shape[0]): # get rho, gamma, beta of background and reference white: if (inputtype != 'xyz'): xyzb = spd_to_xyz(np.vstack((datab[0], datab[i+1:i+2,:])), cieobs = '2006_10', relative = False) xyzr = spd_to_xyz(np.vstack((datar[0], datar[i+1:i+2,:])), cieobs = '2006_10', relative = False) else: xyzb = datab[i:i+1,:] xyzr = datar[i:i+1,:] lmsb = np.dot(_CMF['2006_10']['M'],xyzb.T).T # convert to l,m,s rgbb = (lmsb / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta #lmsr = np.dot(_CMF['2006_10']['M'],xyzr.T).T # convert to l,m,s #rgbr = (lmsr / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta #rgbr = rgbr/rgbr[...,1:2]*Lb[i] # calculated EEW cone excitations at same luminance values as background rgbr = np.ones(xyzr.shape)*Lb[i] # explicitely equal EEW cone excitations at same luminance values as background if direction == 'forward': # get rho, gamma, beta of stimulus: if (inputtype != 'xyz'): xyz = spd_to_xyz(data[i], cieobs = '2006_10', relative = False) elif (inputtype == 'xyz'): xyz = data[i] lms = np.dot(_CMF['2006_10']['M'],xyz.T).T # convert to l,m,s rgb = (lms / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta # apply von-kries cat with D = 1: if (rgbb == 0).any(): Mcat = np.eye(3) else: Mcat = np.diag((rgbr/rgbb)[0]) rgba = np.dot(Mcat,rgb.T).T # apply naka-rushton compression: rgbc = naka_rushton(rgba, n = naka['n'], sig = naka['sig'](rgbr.mean()), noise = naka['noise'], scaling = naka['scaling']) #rgbc = np.ones(rgbc.shape)*rgbc.mean() # test if eew ends up at origin # calculate achromatic and color difference signals, A, a, b: Aab = np.dot(MAab, rgbc.T).T A,a,b = asplit(Aab) a = ca*a b = cb*b # calculate colorfullness like signal M: M = cM*((a**2.0 + b**2.0)**0.5) # calculate brightness Q: Q = cA*(A + cHK[0]*M**cHK[1]) # last term is contribution of Helmholtz-Kohlrausch effect on brightness # calculate saturation, s: s = M / Q # calculate amount of white, W: W = 1 / (1.0 + cW[0]*(s**cW[1])) # adjust Q for size (fov) of stimulus (matter of debate whether to do this before or after calculation of s or W, there was no data on s, M or W for different sized stimuli: after) Q = Q*(fov/10.0)**cfov # calculate hue, h and Hue quadrature, H: h = hue_angle(a,b, htype = 'deg') if 'H' in outin: H = hue_quadrature(h, unique_hue_data = unique_hue_data) else: H = None # calculate cart. co.: if 'aM' in outin: aM = M*np.cos(h*np.pi/180.0) bM = M*np.sin(h*np.pi/180.0) if 'aS' in outin: aS = s*np.cos(h*np.pi/180.0) bS = s*np.sin(h*np.pi/180.0) if 'aW' in outin: aW = W*np.cos(h*np.pi/180.0) bW = W*np.sin(h*np.pi/180.0) if (outin != ['Q','aW','bW']): camout[i] = eval('ajoin(('+','.join(outin)+'))') else: camout[i] = ajoin((Q,aW,bW)) elif direction == 'inverse': # get Q, M and a, b depending on input type: if 'aW' in outin: Q,a,b = asplit(data[i]) Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref W = (a**2.0 + b**2.0)**0.5 s = (((1.0 / W) - 1.0)/cW[0])**(1.0/cW[1]) M = s*Q if 'aM' in outin: Q,a,b = asplit(data[i]) Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref M = (a**2.0 + b**2.0)**0.5 if 'aS' in outin: Q,a,b = asplit(data[i]) Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref s = (a**2.0 + b**2.0)**0.5 M = s*Q if 'h' in outin: Q, WsM, h = asplit(data[i]) Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref if 'W' in outin: s = (((1.0 / WsM) - 1.0)/cW[0])**(1.0/cW[1]) M = s*Q elif 's' in outin: M = WsM*Q elif 'M' in outin: M = WsM # calculate achromatic signal, A from Q and M: A = Q/cA - cHK[0]*M**cHK[1] # calculate hue angle: h = hue_angle(a,b, htype = 'rad') # calculate a,b from M and h: a = (M/cM)*np.cos(h) b = (M/cM)*np.sin(h) a = a/ca b = b/cb # create Aab: Aab = ajoin((A,a,b)) # calculate rgbc: rgbc = np.dot(invMAab, Aab.T).T # decompress rgbc to (adapted) rgba : rgba = naka_rushton(rgbc, n = naka['n'], sig = naka['sig'](rgbr.mean()), noise = naka['noise'], scaling = naka['scaling'], direction = 'inverse') # apply inverse von-kries cat with D = 1: rgb = np.dot(np.diag((rgbb/rgbr)[0]),rgba.T).T # convert rgb to lms to xyz: lms = rgb/k*_CMF['2006_10']['K'] xyz = np.dot(Mlms2xyz,lms.T).T camout[i] = xyz if camout.shape[0] == 1: camout = np.squeeze(camout,axis = 0) return camout
def cam_sww16(data, dataw = None, Yb = 20.0, Lw = 400.0, Ccwb = None, relative = True, \ parameters = None, inputtype = 'xyz', direction = 'forward', \ cieobs = '2006_10'): """ A simple principled color appearance model based on a mapping of the Munsell color system. | This function implements the JOSA A (parameters = 'JOSA') published model. Args: :data: | ndarray with input tristimulus values | or spectral data | or input color appearance correlates | Can be of shape: (N [, xM], x 3), whereby: | N refers to samples and M refers to light sources. | Note that for spectral input shape is (N x (M+1) x wl) :dataw: | None or ndarray, optional | Input tristimulus values or spectral data of white point. | None defaults to the use of CIE illuminant C. :Yb: | 20.0, optional | Luminance factor of background (perfect white diffuser, Yw = 100) :Lw: | 400.0, optional | Luminance (cd/m²) of white point. :Ccwb: | None, optional | Degree of cognitive adaptation (white point balancing) | If None: use [..,..] from parameters dict. :relative: | True or False, optional | True: xyz tristimulus values are relative (Yw = 100) :parameters: | None or str or dict, optional | Dict with model parameters. | - None: defaults to luxpy.cam._CAM_SWW_2016_PARAMETERS['JOSA'] | - str: 'best-fit-JOSA' or 'best-fit-all-Munsell' | - dict: user defined model parameters | (dict should have same structure) :inputtype: | 'xyz' or 'spd', optional | Specifies the type of input: | tristimulus values or spectral data for the forward mode. :direction: | 'forward' or 'inverse', optional | -'forward': xyz -> cam_sww_2016 | -'inverse': cam_sww_2016 -> xyz :cieobs: | '2006_10', optional | CMF set to use to perform calculations where spectral data is involved (inputtype == 'spd'; dataw = None) | Other options: see luxpy._CMF['types'] Returns: :returns: | ndarray with color appearance correlates (:direction: == 'forward') | or | XYZ tristimulus values (:direction: == 'inverse') Notes: | This function implements the JOSA A (parameters = 'JOSA') published model. | With: | 1. A correction for the parameter | in Eq.4 of Fig. 11: 0.952 --> -0.952 | | 2. The delta_ac and delta_bc white-balance shifts in Eq. 5e & 5f | should be: -0.028 & 0.821 | | (cfr. Ccwb = 0.66 in: | ab_test_out = ab_test_int - Ccwb*ab_gray_adaptation_field_int)) References: 1. `Smet, K. A. G., Webster, M. A., & Whitehead, L. A. (2016). A simple principled approach for modeling and understanding uniform color metrics. Journal of the Optical Society of America A, 33(3), A319–A331. <https://doi.org/10.1364/JOSAA.33.00A319>`_ """ # get model parameters args = locals().copy() if parameters is None: parameters = _CAM_SWW16_PARAMETERS['JOSA'] if isinstance(parameters,str): parameters = _CAM_SWW16_PARAMETERS[parameters] parameters = put_args_in_db(parameters,args) #overwrite parameters with other (not-None) args input #unpack model parameters: Cc, Ccwb, Cf, Mxyz2lms, cLMS, cab_int, cab_out, calpha, cbeta,cga1, cga2, cgb1, cgb2, cl_int, clambda, lms0 = [parameters[x] for x in sorted(parameters.keys())] # setup default adaptation field: if (dataw is None): dataw = _CIE_ILLUMINANTS['C'].copy() # get illuminant C xyzw = spd_to_xyz(dataw, cieobs = cieobs,relative=False) # get abs. tristimulus values if relative == False: #input is expected to be absolute dataw[1:] = Lw*dataw[1:]/xyzw[:,1:2] #dataw = Lw*dataw # make absolute else: dataw = dataw # make relative (Y=100) if inputtype == 'xyz': dataw = spd_to_xyz(dataw, cieobs = cieobs, relative = relative) # precomputations: Mxyz2lms = np.dot(np.diag(cLMS),math.normalize_3x3_matrix(Mxyz2lms, np.array([[1, 1, 1]]))) # normalize matrix for xyz-> lms conversion to ill. E weighted with cLMS invMxyz2lms = np.linalg.inv(Mxyz2lms) MAab = np.array([clambda,calpha,cbeta]) invMAab = np.linalg.inv(MAab) #initialize data and camout: data = np2d(data).copy() # stimulus data (can be upto NxMx3 for xyz, or [N x (M+1) x wl] for spd)) dataw = np2d(dataw).copy() # white point (can be upto Nx3 for xyz, or [(N+1) x wl] for spd) # make axis 1 of dataw have 'same' dimensions as data: if (data.ndim == 2): data = np.expand_dims(data, axis = 1) # add light source axis 1 if inputtype == 'xyz': if dataw.shape[0] == 1: #make dataw have same lights source dimension size as data dataw = np.repeat(dataw,data.shape[1],axis=0) else: if dataw.shape[0] == 2: dataw = np.vstack((dataw[0],np.repeat(dataw[1:], data.shape[1], axis = 0))) # Flip light source dim to axis 0: data = np.transpose(data, axes = (1,0,2)) # Initialize output array: dshape = list(data.shape) dshape[-1] = 3 # requested number of correlates: l_int, a_int, b_int if (inputtype != 'xyz') & (direction == 'forward'): dshape[-2] = dshape[-2] - 1 # wavelength row doesn't count & only with forward can the input data be spectral camout = np.nan*np.ones(dshape) # apply forward/inverse model for each row in data: for i in range(data.shape[0]): # stage 1: calculate photon rates of stimulus and adapting field, lmst & lmsf: if (inputtype != 'xyz'): if relative == True: xyzw_abs = spd_to_xyz(np.vstack((dataw[0],dataw[i+1])), cieobs = cieobs, relative = False) dataw[i+1] = Lw*dataw[i+1]/xyzw_abs[0,1] # make absolute xyzw = spd_to_xyz(np.vstack((dataw[0],dataw[i+1])), cieobs = cieobs, relative = False) lmsw = 683.0*np.dot(Mxyz2lms,xyzw.T).T/_CMF[cieobs]['K'] lmsf = (Yb/100.0)*lmsw # calculate adaptation field and convert to l,m,s if (direction == 'forward'): if relative == True: data[i,1:,:] = Lw*data[i,1:,:]/xyzw_abs[0,1] # make absolute xyzt = spd_to_xyz(data[i], cieobs = cieobs, relative = False)/_CMF[cieobs]['K'] lmst = 683.0*np.dot(Mxyz2lms,xyzt.T).T # convert to l,m,s else: lmst = lmsf # put lmsf in lmst for inverse-mode elif (inputtype == 'xyz'): if relative == True: dataw[i] = Lw*dataw[i]/100.0 # make absolute lmsw = 683.0* np.dot(Mxyz2lms, dataw[i].T).T /_CMF[cieobs]['K'] # convert to lms lmsf = (Yb/100.0)*lmsw if (direction == 'forward'): if relative == True: data[i] = Lw*data[i]/100.0 # make absolute lmst = 683.0* np.dot(Mxyz2lms, data[i].T).T /_CMF[cieobs]['K'] # convert to lms else: lmst = lmsf # put lmsf in lmst for inverse-mode # stage 2: calculate cone outputs of stimulus lmstp lmstp = math.erf(Cc*(np.log(lmst/lms0) + Cf*np.log(lmsf/lms0))) lmsfp = math.erf(Cc*(np.log(lmsf/lms0) + Cf*np.log(lmsf/lms0))) lmstp = np.vstack((lmsfp,lmstp)) # add adaptation field lms temporarily to lmsp for quick calculation # stage 3: calculate optic nerve signals, lam*, alphp, betp: lstar,alph, bet = asplit(np.dot(MAab, lmstp.T).T) alphp = cga1[0]*alph alphp[alph<0] = cga1[1]*alph[alph<0] betp = cgb1[0]*bet betp[bet<0] = cgb1[1]*bet[bet<0] # stage 4: calculate recoded nerve signals, alphapp, betapp: alphpp = cga2[0]*(alphp + betp) betpp = cgb2[0]*(alphp - betp) # stage 5: calculate conscious color perception: lstar_int = cl_int[0]*(lstar + cl_int[1]) alph_int = cab_int[0]*(np.cos(cab_int[1]*np.pi/180.0)*alphpp - np.sin(cab_int[1]*np.pi/180.0)*betpp) bet_int = cab_int[0]*(np.sin(cab_int[1]*np.pi/180.0)*alphpp + np.cos(cab_int[1]*np.pi/180.0)*betpp) lstar_out = lstar_int if direction == 'forward': if Ccwb is None: alph_out = alph_int - cab_out[0] bet_out = bet_int - cab_out[1] else: Ccwb = Ccwb*np.ones((2)) Ccwb[Ccwb<0.0] = 0.0 Ccwb[Ccwb>1.0] = 1.0 alph_out = alph_int - Ccwb[0]*alph_int[0] # white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation bet_out = bet_int - Ccwb[1]*bet_int[0] camout[i] = np.vstack((lstar_out[1:],alph_out[1:],bet_out[1:])).T # stack together and remove adaptation field from vertical stack elif direction == 'inverse': labf_int = np.hstack((lstar_int[0],alph_int[0],bet_int[0])) # get lstar_out, alph_out & bet_out for data: lstar_out, alph_out, bet_out = asplit(data[i]) # stage 5 inverse: # undo cortical white-balance: if Ccwb is None: alph_int = alph_out + cab_out[0] bet_int = bet_out + cab_out[1] else: Ccwb = Ccwb*np.ones((2)) Ccwb[Ccwb<0.0] = 0.0 Ccwb[Ccwb>1.0] = 1.0 alph_int = alph_out + Ccwb[0]*alph_int[0] # inverse white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation bet_int = bet_out + Ccwb[1]*bet_int[0] lstar_int = lstar_out alphpp = (1.0 / cab_int[0]) * (np.cos(-cab_int[1]*np.pi/180.0)*alph_int - np.sin(-cab_int[1]*np.pi/180.0)*bet_int) betpp = (1.0 / cab_int[0]) * (np.sin(-cab_int[1]*np.pi/180.0)*alph_int + np.cos(-cab_int[1]*np.pi/180.0)*bet_int) lstar_int = lstar_out lstar = (lstar_int /cl_int[0]) - cl_int[1] # stage 4 inverse: alphp = 0.5*(alphpp/cga2[0] + betpp/cgb2[0]) # <-- alphpp = (Cga2.*(alphp+betp)); betp = 0.5*(alphpp/cga2[0] - betpp/cgb2[0]) # <-- betpp = (Cgb2.*(alphp-betp)); # stage 3 invers: alph = alphp/cga1[0] bet = betp/cgb1[0] sa = np.sign(cga1[1]) sb = np.sign(cgb1[1]) alph[(sa*alphp)<0.0] = alphp[(sa*alphp)<0] / cga1[1] bet[(sb*betp)<0.0] = betp[(sb*betp)<0] / cgb1[1] lab = ajoin((lstar, alph, bet)) # stage 2 inverse: lmstp = np.dot(invMAab,lab.T).T lmstp[lmstp<-1.0] = -1.0 lmstp[lmstp>1.0] = 1.0 lmstp = math.erfinv(lmstp) / Cc - Cf*np.log(lmsf/lms0) lmst = np.exp(lmstp) * lms0 # stage 1 inverse: xyzt = np.dot(invMxyz2lms,lmst.T).T if relative == True: xyzt = (100.0/Lw) * xyzt camout[i] = xyzt # if flipaxis0and1 == True: # loop over shortest dim. # camout = np.transpose(camout, axes = (1,0,2)) # Flip light source dim back to axis 1: camout = np.transpose(camout, axes = (1,0,2)) if camout.shape[0] == 1: camout = np.squeeze(camout,axis = 0) return camout