Beispiel #1
0
def xyz_to_cct_HA(xyzw):
    """
    Convert XYZ tristimulus values to correlated color temperature (CCT). 
    
    Args:
        :xyzw: 
            | ndarray of tristimulus values
        
    Returns:
        :cct: 
            | ndarray of correlated color temperatures estimates
    
    References:
        1. `Hernández-Andrés, Javier; Lee, RL; Romero, J (September 20, 1999). 
        Calculating Correlated Color Temperatures Across the Entire Gamut 
        of Daylight and Skylight Chromaticities.
        Applied Optics. 38 (27), 5703–5709. P
        <https://www.osapublishing.org/ao/abstract.cfm?uri=ao-38-27-5703>`_
            
    Notes: 
        According to paper small error from 3000 - 800 000 K, but a test with 
        Planckians showed errors up to 20% around 500 000 K; 
        e>0.05 for T>200 000, e>0.1 for T>300 000, ...
    """
    if len(xyzw.shape)>2:
        raise Exception('xyz_to_cct_HA(): Input xyzw.ndim must be <= 2 !')
        
    out_of_range_code = np.nan
    xe = [0.3366, 0.3356]
    ye = [0.1735, 0.1691]
    A0 = [-949.86315, 36284.48953]
    A1 = [6253.80338, 0.00228]
    t1 = [0.92159, 0.07861]
    A2 = [28.70599, 5.4535*1e-36]
    t2 = [0.20039, 0.01543]
    A3 = [0.00004, 0.0]
    t3 = [0.07125,1.0]
    cct_ranges = np.array([[3000.0,50000.0],[50000.0,800000.0]])
    
    Yxy = xyz_to_Yxy(xyzw)
    CCT = np.ones((1,Yxy.shape[0]))*out_of_range_code
    for i in range(2):
        n = (Yxy[:,1]-xe[i])/(Yxy[:,2]-ye[i])
        CCT_i = np2d(np.array(A0[i] + A1[i]*np.exp(np.divide(-n,t1[i])) + A2[i]*np.exp(np.divide(-n,t2[i])) + A3[i]*np.exp(np.divide(-n,t3[i]))))
        p = (CCT_i >= (1.0-0.05*(i == 0))*cct_ranges[i][0]) & (CCT_i < (1.0+0.05*(i == 0))*cct_ranges[i][1])
        CCT[p] = CCT_i[p]
        p = (CCT_i < (1.0-0.05)*cct_ranges[0][0]) #smaller than smallest valid CCT value
        CCT[p] = -1
   
    if (np.isnan(CCT.sum()) == True) | (np.any(CCT == -1)):
        print("Warning: xyz_to_cct_HA(): one or more CCTs out of range! --> (CCT < 3 kK,  CCT >800 kK) coded as (-1, NaN) 's")
    return CCT.T
Beispiel #2
0
def cct_to_neutral_loci_smet2018(cct, nlocitype='uw', out='duv,D'):
    """
    Calculate the most neutral appearing Duv10 in and the degree of neutrality for a specified CCT using the models in Smet et al. (2018).
    
    Args:
        :cct10:
            | ndarray CCT 
        :nlocitype:
            | 'uw', optional
            | 'uw': use unique white models published in Smet et al. (2014).
            | 'ca': use degree of chromatic adaptation model from Smet et al. (2017).
        :out:
            | 'duv,D', optional
            | Specifies requested output (other options: 'duv', 'D').
            
    Returns:
        :duv: ndarray with most neutral Duv10 value corresponding to the cct input.
        :D: ndarray with the degree of neutrality at (cct, duv).
        
    References:
         1. `Smet, K. A. G. (2018). 
        Two Neutral White Illumination Loci Based on Unique White Rating and Degree of Chromatic Adaptation. 
        LEUKOS, 14(2), 55–67.  
        <https://doi.org/10.1080/15502724.2017.1385400>`_  
        
    Notes:
        1. Duv is specified in the CIE 1960 u10v10 chromatity diagram as the 
        models were developed using CIE 1964 10° tristimulus, chromaticity and CCT values.
        2. The parameter +0.0172 in Eq. 4b should be -0.0172
    """
    if nlocitype == 'uw':
        duv = 0.0202 * np.log(cct / 3325) * np.exp(
            -1.445 * np.log(cct / 3325)**2) - 0.0137
        D = np.exp(-(6368 * ((1 / cct) -
                             (1 / 6410)))**2)  # degree of neutrality
    elif nlocitype == 'ca':
        duv = 0.0382 * np.log(cct / 2194) * np.exp(
            -0.679 * np.log(cct / 2194)**2) - 0.0172
        D = np.exp(-(3912 * ((1 / cct) -
                             (1 / 6795)))**2)  # degree of adaptation
    else:
        raise Exception('Unrecognized nlocitype')

    if out == 'duv,D':
        return duv, D
    elif out == 'duv':
        return duv
    elif out == 'D':
        return D
    else:
        raise Exception('smet_white_loci(): Requested output unrecognized.')
def apply_poly_model_at_hue_x(poly_model, pmodel, dCHoverC_res, \
                              hx = None, Cxr = 40, sig = _VF_SIG):
    """
    Applies base color shift model at (hue,chroma) coordinates
    
    Args:
        :poly_model: 
            | function handle to model
        :pmodel:
            | ndarray with model parameters.
        :dCHoverC_res:
            | ndarray with residuals between 'dCoverC,dH' of samples 
            | and 'dCoverC,dH' predicted by the model.
            | Note: dCoverC = (Ct - Cr)/Cr and dH = ht - hr 
            |      (predicted from model, see notes luxpy.cri.get_poly_model())
        :hx:
            | None or ndarray, optional
            | None defaults to np.arange(np.pi/10.0,2*np.pi,2*np.pi/10.0)
        :Cxr:
            | 40, optional
        :sig: 
            | _VF_SIG or float, optional
            | Determines smooth transition between hue-bin-boundaries (no hard 
              cutoff at hue bin boundary).
        
    Returns:
        :returns: 
            | ndarrays with dCoverC_x, dCoverC_x_sig, dH_x, dH_x_sig
            | Note '_sig' denotes the uncertainty: 
            |     e.g.  dH_x_sig is the uncertainty of dH at input (hue/chroma).
    """
     
    if hx is None:
        dh = 2*np.pi/10.0;
        hx = np.arange(dh/2,2*np.pi,dh) #hue angles at which to apply model, i.e. calculate 'average' measures
        
    # A calculate reference coordinates:
    axr = Cxr*np.cos(hx)
    bxr = Cxr*np.sin(hx)
    
    # B apply model at reference coordinates to obtain test coordinates:
    axt,bxt,Cxt,hxt,axr,bxr,Cxr,hxr = apply_poly_model_at_x(poly_model, pmodel,axr,bxr)
    
    # C Calculate dC/C, dH for test and ref at fixed hues:
    dCoverC_x = (Cxt-Cxr)/(np.hstack((Cxr+Cxt)).max())
    dH_x = (180/np.pi)*(hxt-hxr)
#    dCoverC_x = np.round(dCoverC_x,decimals = 2)
#    dH_x = np.round(dH_x,decimals = 0)

    # D calculate 'average' noise measures using sig-value:
    href = dCHoverC_res[:,0:1]
    dCoverC_res = dCHoverC_res[:,1:2]
    dHoverC_res = dCHoverC_res[:,2:3]
    dHsigi = np.exp((np.dstack((np.abs(hx-href),np.abs((hx-href-2*np.pi)),np.abs(hx-href-2*np.pi))).min(axis=2)**2)/(-2)/sig)
    dH_x_sig = (180/np.pi)*(np.sqrt((dHsigi*(dHoverC_res**2)).sum(axis=0,keepdims=True)/dHsigi.sum(axis=0,keepdims=True)))
    #dH_x_sig_avg = np.sqrt(np.sum(dH_x_sig**2,axis=1)/hx.shape[0])
    dCoverC_x_sig = (np.sqrt((dHsigi*(dCoverC_res**2)).sum(axis=0,keepdims=True)/dHsigi.sum(axis=0,keepdims=True)))
    #dCoverC_x_sig_avg = np.sqrt(np.sum(dCoverC_x_sig**2,axis=1)/hx.shape[0])

    return dCoverC_x, dCoverC_x_sig, dH_x, dH_x_sig
Beispiel #4
0
def bvgpdf(x, y = None, mu = None, sigmainv = None):
    """
    Evaluate bivariate Gaussian probability density function (BVGPDF) at (x,y) 
    with center mu and inverse covariance matric, sigmainv.
    
    Args:
        :x: 
            | scalar or list or ndarray (.ndim = 1 or 2) with 
            | x(y)-coordinates at which to evaluate bivariate Gaussian PD.
        :y: 
            | None or scalar or list or ndarray (.ndim = 1) with 
            | y-coordinates at which to evaluate bivariate Gaussian PD, optional.
            | If :y: is None, :x: should be a 2d array.
        :mu: 
            | None or ndarray (.ndim = 2) with center coordinates of 
            | bivariate Gaussian PD, optional. 
            | None defaults to ndarray([0,0]).
        :sigmainv:
            | None or ndarray with 'inverse covariance matrix', optional 
            | Determines the shape and orientation of the PD.
            | None default to numpy.eye(2).
     
    Returns:
         :returns:
             | ndarray with magnitude of BVGPDF(x,y)   
    
    """
    return np.exp(-0.5*mahalanobis2(x,y = y, mu = mu, sigmainv= sigmainv))
Beispiel #5
0
def psy_scale(data,
              scale_factor=[1.0 / 55.0, 3.0 / 2.0, 2.0],
              scale_max=100.0):  # defaults for cri2012
    """
    Psychometric based color rendering index scale from CRI2012: 
    
    | Rfi,a = 100 * (2 / (exp(c1*abs(DEi,a)**(c2) + 1))) ** c3.
        
    Args:
        :data: 
            | float or list[floats] or ndarray 
        :scale_factor:
            | [1/55, 3/2, 2.0] or list[float] or ndarray, optional
            | Rescales color differences before subtracting them from :scale_max:
            | Note that the default value is the one from (Smet et al. 2013, LRT).
        :scale_max: 
            | 100.0, optional
            | Maximum value of linear scale
    
    Returns:
        :returns: 
            | float or list[floats] or ndarray
        
    References:
        1. `Smet, K., Schanda, J., Whitehead, L., & Luo, R. (2013). 
        CRI2012: A proposal for updating the CIE colour rendering index. 
        Lighting Research and Technology, 45, 689–709. 
        <http://lrt.sagepub.com/content/45/6/689>`_  
        
    """
    return scale_max * np.power(
        2.0 /
        (np.exp(scale_factor[0] * np.power(np.abs(data), scale_factor[1])) +
         1.0), scale_factor[2])
Beispiel #6
0
def log_scale(data,
              scale_factor=[6.73],
              scale_max=100.0):  # defaults from cie-224-2017 cri
    """
    Log-based color rendering index scale from Davis & Ohno (2009): 
    
    | Rfi,a = 10 * ln(exp((100 - c1*DEi,a)/10) + 1).
                    
    Args:
        :data: 
            | float or list[floats] or ndarray 
        :scale_factor:
            | [6.73] or list[float] or ndarray, optional
            | Rescales color differences before subtracting them from :scale_max:
            | Note that the default value is the one from cie-224-2017.
        :scale_max:
            | 100.0, optional
            | Maximum value of linear scale
    
    Returns:
        :returns:
            | float or list[floats] or ndarray
        
    References:
        1. `W. Davis and Y. Ohno, 
        “Color quality scale,” (2010), 
        Opt. Eng., vol. 49, no. 3, pp. 33602–33616.
        <http://spie.org/Publications/Journal/10.1117/1.3360335>`_
        2. `CIE224:2017. CIE 2017 Colour Fidelity Index for accurate scientific use. 
        Vienna, Austria: CIE. (2017).
        <http://www.cie.co.at/index.php?i_ca_id=1027>`_

    """
    return 10.0 * np.log(
        np.exp((scale_max - scale_factor[0] * data) / 10.0) + 1.0)
Beispiel #7
0
def fCLa(wl, Elv, integral, Norm = None, k = None, a_b_y = None, a_rod = None, RodSat = None,\
        Vphotl = None, Vscotl = None, Vl_mpl = None, Scl_mpl = None, Mcl = None, WL = None):
    """
    Local helper function that calculate CLa from El based on Eq. 1 
    in Rea et al (2012).
    
    Args:
        The various model parameters as described in the paper and contained 
        in the dict _LRC_CONST.
        
    Returns:
        ndarray with CLa values.
        
    References:
        1. `Rea MS, Figueiro MG, Bierman A, and Hamner R (2012). 
        Modelling the spectral sensitivity of the human circadian system. 
        Light. Res. Technol. 44, 386–396.  
        <https://doi.org/10.1177/1477153511430474>`_
            
        2. `Rea MS, Figueiro MG, Bierman A, and Hamner R (2012). 
        Erratum: Modeling the spectral sensitivity of the human circadian system 
        (Lighting Research and Technology (2012) 44:4 (386-396)). 
        Light. Res. Technol. 44, 516.
        <https://doi.org/10.1177/1477153512467607>`_
        
        
    """
    dl = getwld(wl)

    # Calculate piecewise function in Eq. 1 in Rea et al. 2012:

    #calculate value of condition function (~second term of 1st fcn):
    cond_number = integral(
        Elv * Scl_mpl * dl) - k * integral(Elv * Vl_mpl * dl)

    # Calculate second fcn:
    fcn2 = integral(Elv * Mcl * dl)

    # Calculate last term of 1st fcn:
    fcn1_3 = a_rod * (1 - np.exp(-integral(Vscotl * Elv * dl) / RodSat))

    # Satisfying cond. is effectively adding fcn1_2 and fcn1_3 to fcn1_1:
    CLa = Norm * (fcn2 + 1 * (cond_number >= 0) *
                  (a_b_y * cond_number - fcn1_3))

    return CLa
Beispiel #8
0
def xyz_to_neutrality_smet2018(xyz10, nlocitype='uw', uw_model='Linvar'):
    """
    Calculate degree of neutrality using the unique white model in Smet et al. (2014) or the normalized (max = 1) degree of chromatic adaptation model from Smet et al. (2017).
    
    Args:
        :xyz10:
            | ndarray with CIE 1964 10° xyz tristimulus values.
        :nlocitype:
            | 'uw', optional
            | 'uw': use unique white models published in Smet et al. (2014).
            | 'ca': use degree of chromatic adaptation model from Smet et al. (2017).
        :uw_model:
            | 'Linvar', optional
            | Use Luminance invariant unique white model from Smet et al. (2014).
            | Other options: 'L200' (200 cd/m²), 'L1000' (1000 cd/m²) and 'L2000' (2000 cd/m²).
    
    Returns:
        :N: 
            | ndarray with calculated neutrality
            
    References:
        1.`Smet, K., Deconinck, G., & Hanselaer, P. (2014). 
        Chromaticity of unique white in object mode. 
        Optics Express, 22(21), 25830–25841. 
        <https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-21-25830>`_
        
        2. `Smet, K.A.G.*, Zhai, Q., Luo, M.R., Hanselaer, P., (2017), 
        Study of chromatic adaptation using memory color matches, 
        Part II: colored illuminants, 
        Opt. Express, 25(7), pp. 8350-8365.
        <https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-7-8350&origin=search)>`_
    """
    if nlocitype == 'uw':
        uv = xyz_to_Yuv(xyz10)[..., 1:]
        G0 = lambda up, vp, a: np.exp(-0.5 * (a[0] * (up - a[2])**2 + a[1] *
                                              (vp - a[3])**2 + 2 * a[4] *
                                              (up - a[2]) * (vp - a[3])))
        return G0(uv[..., 0:1], uv[..., 1:2],
                  _UW_NEUTRALITY_PARAMETERS_SMET2014[uw_model])
    elif nlocitype == 'ca':
        return cat.smet2017_D(xyz10, Dmax=1)
    else:
        raise Exception('Unrecognized nlocitype')
Beispiel #9
0
def spd_to_mcri(SPD, D=0.9, E=None, Yb=20.0, out='Rm', wl=None):
    """
    Calculates the MCRI or Memory Color Rendition Index, Rm
    
    Args: 
        :SPD: 
            | ndarray with spectral data (can be multiple SPDs, 
              first axis are the wavelengths)
        :D: 
            | 0.9, optional
            | Degree of adaptation.
        :E: 
            | None, optional
            | Illuminance in lux 
            |  (used to calculate La = (Yb/100)*(E/pi) to then calculate D 
            |  following the 'cat02' model). 
            | If None: the degree is determined by :D:
            |  If (:E: is not None) & (:Yb: is None):  :E: is assumed to contain 
               the adapting field luminance La (cd/m²).
        :Yb: 
            | 20.0, optional
            | Luminance factor of background. (used when calculating La from E)
            | If None, E contains La (cd/m²).
        :out: 
            | 'Rm' or str, optional
            | Specifies requested output (e.g. 'Rm,Rmi,cct,duv') 
        :wl: 
            | None, optional
            | Wavelengths (or [start, end, spacing]) to interpolate the SPDs to. 
            | None: default to no interpolation   
    
    Returns:
        :returns: 
            | float or ndarray with MCRI Rm for :out: 'Rm'
            | Other output is also possible by changing the :out: str value.        
          
    References:
        1. `K.A.G. Smet, W.R. Ryckaert, M.R. Pointer, G. Deconinck, P. Hanselaer,(2012)
        “A memory colour quality metric for white light sources,” 
        Energy Build., vol. 49, no. C, pp. 216–225.
        <http://www.sciencedirect.com/science/article/pii/S0378778812000837>`_
    """
    SPD = np2d(SPD)

    if wl is not None:
        SPD = spd(data=SPD, interpolation=_S_INTERP_TYPE, kind='np', wl=wl)

    # unpack metric default values:
    avg, catf, cieobs, cri_specific_pars, cspace, ref_type, rg_pars, sampleset, scale = [
        _MCRI_DEFAULTS[x] for x in sorted(_MCRI_DEFAULTS.keys())
    ]
    similarity_ai = cri_specific_pars['similarity_ai']
    Mxyz2lms = cspace['Mxyz2lms']
    scale_fcn = scale['fcn']
    scale_factor = scale['cfactor']
    sampleset = eval(sampleset)

    # A. calculate xyz:
    xyzti, xyztw = spd_to_xyz(SPD, cieobs=cieobs['xyz'], rfl=sampleset, out=2)
    if 'cct' in out.split(','):
        cct, duv = xyz_to_cct(xyztw,
                              cieobs=cieobs['cct'],
                              out='cct,duv',
                              mode='lut')

    # B. perform chromatic adaptation to adopted whitepoint of ipt color space, i.e. D65:
    if catf is not None:
        Dtype_cat, F, Yb_cat, catmode_cat, cattype_cat, mcat_cat, xyzw_cat = [
            catf[x] for x in sorted(catf.keys())
        ]

        # calculate degree of adaptationn D:
        if E is not None:
            if Yb is not None:
                La = (Yb / 100.0) * (E / np.pi)
            else:
                La = E
            D = cat.get_degree_of_adaptation(Dtype=Dtype_cat, F=F, La=La)
        else:
            Dtype_cat = None  # direct input of D

        if (E is None) and (D is None):
            D = 1.0  # set degree of adaptation to 1 !
        if D > 1.0: D = 1.0
        if D < 0.6: D = 0.6  # put a limit on the lowest D

        # apply cat:
        xyzti = cat.apply(xyzti,
                          cattype=cattype_cat,
                          catmode=catmode_cat,
                          xyzw1=xyztw,
                          xyzw0=None,
                          xyzw2=xyzw_cat,
                          D=D,
                          mcat=[mcat_cat],
                          Dtype=Dtype_cat)
        xyztw = cat.apply(xyztw,
                          cattype=cattype_cat,
                          catmode=catmode_cat,
                          xyzw1=xyztw,
                          xyzw0=None,
                          xyzw2=xyzw_cat,
                          D=D,
                          mcat=[mcat_cat],
                          Dtype=Dtype_cat)

    # C. convert xyz to ipt and split:
    ipt = xyz_to_ipt(
        xyzti, cieobs=cieobs['xyz'], M=Mxyz2lms
    )  #input matrix as published in Smet et al. 2012, Energy and Buildings
    I, P, T = asplit(ipt)

    # D. calculate specific (hue dependent) similarity indicators, Si:
    if len(xyzti.shape) == 3:
        ai = np.expand_dims(similarity_ai, axis=1)
    else:
        ai = similarity_ai
    a1, a2, a3, a4, a5 = asplit(ai)
    mahalanobis_d2 = (a3 * np.power((P - a1), 2.0) + a4 * np.power(
        (T - a2), 2.0) + 2.0 * a5 * (P - a1) * (T - a2))
    if (len(mahalanobis_d2.shape) == 3) & (mahalanobis_d2.shape[-1] == 1):
        mahalanobis_d2 = mahalanobis_d2[:, :, 0].T
    Si = np.exp(-0.5 * mahalanobis_d2)

    # E. calculate general similarity indicator, Sa:
    Sa = avg(Si, axis=0, keepdims=True)

    # F. rescale similarity indicators (Si, Sa) with a 0-1 scale to memory color rendition indices (Rmi, Rm) with a 0 - 100 scale:
    Rmi = scale_fcn(np.log(Si), scale_factor=scale_factor)
    Rm = np2d(scale_fcn(np.log(Sa), scale_factor=scale_factor))

    # G. calculate Rg (polyarea of test / polyarea of memory colours):
    if 'Rg' in out.split(','):
        I = I[
            ...,
            None]  #broadcast_shape(I, target_shape = None,expand_2d_to_3d = 0)
        a1 = a1[:, None] * np.ones(
            I.shape
        )  #broadcast_shape(a1, target_shape = None,expand_2d_to_3d = 0)
        a2 = a2[:, None] * np.ones(
            I.shape
        )  #broadcast_shape(a2, target_shape = None,expand_2d_to_3d = 0)
        a12 = np.concatenate(
            (a1, a2), axis=2
        )  #broadcast_shape(np.hstack((a1,a2)), target_shape = ipt.shape,expand_2d_to_3d = 0)
        ipt_mc = np.concatenate((I, a12), axis=2)
        nhbins, normalize_gamut, normalized_chroma_ref, start_hue = [
            rg_pars[x] for x in sorted(rg_pars.keys())
        ]

        Rg = jab_to_rg(ipt,
                       ipt_mc,
                       ordered_and_sliced=False,
                       nhbins=nhbins,
                       start_hue=start_hue,
                       normalize_gamut=normalize_gamut)

    if (out != 'Rm'):
        return eval(out)
    else:
        return Rm
def cie2006cmfsEx(age = 32,fieldsize = 10, wl = None,\
                  var_od_lens = 0, var_od_macula = 0, \
                  var_od_L = 0, var_od_M = 0, var_od_S = 0,\
                  var_shft_L = 0, var_shft_M = 0, var_shft_S = 0,\
                  out = 'LMS', allow_negative_values = False):
    """
    Generate Individual Observer CMFs (cone fundamentals) 
    based on CIE2006 cone fundamentals and published literature 
    on observer variability in color matching and in physiological parameters.
    
    Args:
        :age: 
            | 32 or float or int, optional
            | Observer age
        :fieldsize:
            | 10, optional
            | Field size of stimulus in degrees (between 2° and 10°).
        :wl: 
            | None, optional
            | Interpolation/extraplation of :LMS: output to specified wavelengths.
            | None: output original _WL = np.array([390,780,5])
        :var_od_lens:
            | 0, optional
            | Std Dev. in peak optical density [%] of lens.
        :var_od_macula:
            | 0, optional
            | Std Dev. in peak optical density [%] of macula.
        :var_od_L:
            | 0, optional
            | Std Dev. in peak optical density [%] of L-cone.
        :var_od_M:
            | 0, optional
            | Std Dev. in peak optical density [%] of M-cone.
        :var_od_S:
            | 0, optional
            | Std Dev. in peak optical density [%] of S-cone.
        :var_shft_L:
            | 0, optional
            | Std Dev. in peak wavelength shift [nm] of L-cone. 
        :var_shft_L:
            | 0, optional
            | Std Dev. in peak wavelength shift [nm] of M-cone.  
        :var_shft_S:
            | 0, optional
            | Std Dev. in peak wavelength shift [nm] of S-cone. 
        :out: 
            | 'LMS' or , optional
            | Determines output.
        :allow_negative_values:
            | False, optional
            | Cone fundamentals or color matching functions 
              should not have negative values.
            |     If False: X[X<0] = 0.
            
    Returns:
        :returns: 
            | - 'LMS' : ndarray with individual observer area-normalized 
            |           cone fundamentals. Wavelength have been added.
                
            | [- 'trans_lens': ndarray with lens transmission 
            |      (no wavelengths added, no interpolation)
            |  - 'trans_macula': ndarray with macula transmission 
            |      (no wavelengths added, no interpolation)
            |  - 'sens_photopig' : ndarray with photopigment sens. 
            |      (no wavelengths added, no interpolation)]
            
    References:
         1. `Asano Y, Fairchild MD, and Blondé L (2016). 
         Individual Colorimetric Observer Model. 
         PLoS One 11, 1–19. 
         <http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145671>`_
        
         2. `Asano Y, Fairchild MD, Blondé L, and Morvan P (2016). 
         Color matching experiment for highlighting interobserver variability. 
         Color Res. Appl. 41, 530–539. 
         <https://onlinelibrary.wiley.com/doi/abs/10.1002/col.21975>`_
         
         3. `CIE, and CIE (2006). 
         Fundamental Chromaticity Diagram with Physiological Axes - Part I 
         (Vienna: CIE). 
         <http://www.cie.co.at/publications/fundamental-chromaticity-diagram-physiological-axes-part-1>`_ 
         
         4. `Asano's Individual Colorimetric Observer Model 
         <https://www.rit.edu/cos/colorscience/re_AsanoObserverFunctions.php>`_
    """
    fs = fieldsize
    rmd = _INDVCMF_DATA['rmd'].copy()
    LMSa = _INDVCMF_DATA['LMSa'].copy()
    docul = _INDVCMF_DATA['docul'].copy()

    # field size corrected macular density:
    pkOd_Macula = 0.485 * np.exp(-fs / 6.132) * (
        1 + var_od_macula / 100)  # varied peak optical density of macula
    corrected_rmd = rmd * pkOd_Macula

    # age corrected lens/ocular media density:
    if (age <= 60):
        correct_lomd = docul[:1] * (1 + 0.02 * (age - 32)) + docul[1:2]
    else:
        correct_lomd = docul[:1] * (1.56 + 0.0667 * (age - 60)) + docul[1:2]
    correct_lomd = correct_lomd * (1 + var_od_lens / 100
                                   )  # varied overall optical density of lens

    # Peak Wavelength Shift:
    wl_shifted = np.empty(LMSa.shape)
    wl_shifted[0] = _WL + var_shft_L
    wl_shifted[1] = _WL + var_shft_M
    wl_shifted[2] = _WL + var_shft_S

    LMSa_shft = np.empty(LMSa.shape)
    kind = 'cubic'
    LMSa_shft[0] = interpolate.interp1d(wl_shifted[0],
                                        LMSa[0],
                                        kind=kind,
                                        bounds_error=False,
                                        fill_value="extrapolate")(_WL)
    LMSa_shft[1] = interpolate.interp1d(wl_shifted[1],
                                        LMSa[1],
                                        kind=kind,
                                        bounds_error=False,
                                        fill_value="extrapolate")(_WL)
    LMSa_shft[2] = interpolate.interp1d(wl_shifted[2],
                                        LMSa[2],
                                        kind=kind,
                                        bounds_error=False,
                                        fill_value="extrapolate")(_WL)
    #    LMSa[2,np.where(_WL >= _WL_CRIT)] = 0 #np.nan # Not defined above 620nm
    #    LMSa_shft[2,np.where(_WL >= _WL_CRIT)] = 0

    ssw = np.hstack(
        (0, np.sign(np.diff(LMSa_shft[2, :]))
         ))  #detect poor interpolation (sign switch due to instability)
    LMSa_shft[2, np.where((ssw >= 0) & (_WL > 560))] = np.nan

    # corrected LMS (no age correction):
    pkOd_L = (0.38 + 0.54 * np.exp(-fs / 1.333)) * (
        1 + var_od_L / 100)  # varied peak optical density of L-cone
    pkOd_M = (0.38 + 0.54 * np.exp(-fs / 1.333)) * (
        1 + var_od_M / 100)  # varied peak optical density of M-cone
    pkOd_S = (0.30 + 0.45 * np.exp(-fs / 1.333)) * (
        1 + var_od_S / 100)  # varied peak optical density of S-cone

    alpha_lms = 0. * LMSa_shft
    alpha_lms[0] = 1 - 10**(-pkOd_L * (10**LMSa_shft[0]))
    alpha_lms[1] = 1 - 10**(-pkOd_M * (10**LMSa_shft[1]))
    alpha_lms[2] = 1 - 10**(-pkOd_S * (10**LMSa_shft[2]))

    # this fix is required because the above math fails for alpha_lms[2,:]==0
    alpha_lms[2, np.where(_WL >= _WL_CRIT)] = 0

    # Corrected to Corneal Incidence:
    lms_barq = alpha_lms * (10**(-corrected_rmd - correct_lomd)) * np.ones(
        alpha_lms.shape)

    # Corrected to Energy Terms:
    lms_bar = lms_barq * _WL

    # Set NaN values to zero:
    lms_bar[np.isnan(lms_bar)] = 0

    # normalized:
    LMS = 100 * lms_bar / np.nansum(lms_bar, axis=1, keepdims=True)

    # Output extra:
    trans_lens = 10**(-correct_lomd)
    trans_macula = 10**(-corrected_rmd)
    sens_photopig = alpha_lms * _WL

    # Add wavelengths:
    LMS = np.vstack((_WL, LMS))

    if ('xyz' in out.lower().split(',')):
        LMS = lmsb_to_xyzb(LMS,
                           fieldsize,
                           out='xyz',
                           allow_negative_values=allow_negative_values)
        out = out.replace('xyz', 'LMS').replace('XYZ', 'LMS')
    if ('lms' in out.lower().split(',')):
        out = out.replace('lms', 'LMS')

    # Interpolate/extrapolate:
    if wl is None:
        interpolation = None
    else:
        interpolation = 'cubic'
    LMS = spd(LMS, wl=wl, interpolation=interpolation, norm_type='area')

    if (out == 'LMS'):
        return LMS
    elif (out == 'LMS,trans_lens,trans_macula,sens_photopig'):
        return LMS, trans_lens, trans_macula, sens_photopig
    elif (out == 'LMS,trans_lens,trans_macula,sens_photopig,LMSa'):
        return LMS, trans_lens, trans_macula, sens_photopig, LMSa
    else:
        return eval(out)
Beispiel #11
0
def run(data, xyzw, out = 'J,aM,bM', conditions = None, forward = True):
    """ 
    Run CIECAM02 color appearance model in forward or backward modes.
    
    Args:
        :data:
            | ndarray with relative sample xyz values (forward mode) or J'a'b' coordinates (inverse mode)
        :xyzw:
            | ndarray with relative white point tristimulus values  
        :conditions:
            | None, optional
            | Dictionary with viewing conditions.
            | None results in:
            |   {'La':100, 'Yb':20, 'D':1, 'surround':'avg'}
            | For more info see luxpy.cam.ciecam02()?
        :forward:
            | True, optional
            | If True: run in CAM in forward mode, else: inverse mode.
        :out:
            | 'J,aM,bM', optional
            | String with requested output (e.g. "J,aM,bM,M,h") [Forward mode]
            | String with inputs in data. 
            | Input must have data.shape[-1]==3 and last dim of data must have 
            | the following structure: 
            |  * data[...,0] = J or Q,
            |  * data[...,1:] = (aM,bM) or (aC,bC) or (aS,bS)
    Returns:
        :camout:
            | ndarray with Jab coordinates or whatever correlates requested in out.
    
    Note:
        * This is a simplified, less flexible, but faster version than the main ciecam02().
    
    References:
        1. `N. Moroney, M. D. Fairchild, R. W. G. Hunt, C. Li, M. R. Luo, and T. Newman, (2002), 
        "The CIECAM02 color appearance model,” 
        IS&T/SID Tenth Color Imaging Conference. p. 23, 2002.
        <http://rit-mcsl.org/fairchild/PDFs/PRO19.pdf>`_
    """
    outin = out.split(',') if isinstance(out,str) else out
    
    #--------------------------------------------
    # Get/ set conditions parameters:
    if conditions is not None:
        surround_parameters =  {'surrounds': ['avg', 'dim', 'dark'], 
                                'avg' : {'c':0.69, 'Nc':1.0, 'F':1.0,'FLL': 1.0}, 
                                'dim' : {'c':0.59, 'Nc':0.9, 'F':0.9,'FLL':1.0} ,
                                'dark' : {'c':0.525, 'Nc':0.8, 'F':0.8,'FLL':1.0}}
        La = conditions['La']
        Yb = conditions['Yb']
        D = conditions['D']
        surround = conditions['surround']
        if isinstance(surround, str):
            surround = surround_parameters[conditions['surround']]
        F, FLL, Nc, c = [surround[x] for x in sorted(surround.keys())]
    else:
        # set defaults:
        La, Yb, D, F, FLL, Nc, c = 100, 20, 1, 1, 1, 1, 0.69
        
    #--------------------------------------------
    # Define sensor space and cat matrices:        
    mhpe = np.array([[0.38971,0.68898,-0.07868],
                     [-0.22981,1.1834,0.04641],
                     [0.0,0.0,1.0]]) # Hunt-Pointer-Estevez sensors (cone fundamentals)
    
    mcat = np.array([[0.7328, 0.4296, -0.1624],
                       [ -0.7036, 1.6975,  0.0061],
                       [ 0.0030, 0.0136,  0.9834]]) # CAT02 sensor space
    
    #--------------------------------------------
    # pre-calculate some matrices:
    invmcat = np.linalg.inv(mcat)
    mhpe_x_invmcat = np.dot(mhpe,invmcat)
    if not forward: mcat_x_invmhpe = np.dot(mcat,np.linalg.inv(mhpe))
    
    #--------------------------------------------
    # calculate condition dependent parameters:
    Yw = xyzw[...,1:2].T
    k = 1.0 / (5.0*La + 1.0)
    FL = 0.2*(k**4.0)*(5.0*La) + 0.1*((1.0 - k**4.0)**2.0)*((5.0*La)**(1.0/3.0)) # luminance adaptation factor
    n = Yb/Yw 
    Nbb = 0.725*(1/n)**0.2   
    Ncb = Nbb
    z = 1.48 + FLL*n**0.5
    
    if D is None:
        D = F*(1.0-(1.0/3.6)*np.exp((-La-42.0)/92.0))
        
    #===================================================================
    # WHITE POINT transformations (common to forward and inverse modes):
    
    #--------------------------------------------
    # transform from xyzw to cat sensor space:
    rgbw = mcat @ xyzw.T
    
    #--------------------------------------------  
    # apply von Kries cat:
    rgbwc = ((D*Yw/rgbw) + (1 - D))*rgbw # factor 100 from ciecam02 is replaced with Yw[i] in cam16, but see 'note' in Fairchild's "Color Appearance Models" (p291 ni 3ed.)

    #--------------------------------------------
    # convert from cat02 sensor space to cone sensors (hpe):
    rgbwp = (mhpe_x_invmcat @ rgbwc).T
    
    #--------------------------------------------
    # apply Naka_rushton repsonse compression to white:
    NK = lambda x, forward: naka_rushton(x, scaling = 400, n = 0.42, sig = 27.13**(1/0.42), noise = 0.1, forward = forward)
    
    rgbwpa = NK(FL*rgbwp/100.0, True)
    pw = np.where(rgbwp<0)
    rgbwpa[pw] = 0.1 - (NK(FL*np.abs(rgbwp[pw])/100.0, True) - 0.1)
    
    #--------------------------------------------
    # Calculate achromatic signal of white:
    Aw =  (2.0*rgbwpa[...,0] + rgbwpa[...,1] + (1.0/20.0)*rgbwpa[...,2] - 0.305)*Nbb
    
    # massage shape of data for broadcasting:
    if data.ndim == 2: data = data[:,None]

    #===================================================================
    # STIMULUS transformations 
    if forward:
        
        #--------------------------------------------
        # transform from xyz to cat sensor space:
        rgb = math.dot23(mcat, data.T)
        
        #--------------------------------------------  
        # apply von Kries cat:
        rgbc = ((D*Yw/rgbw)[...,None] + (1 - D))*rgb # factor 100 from ciecam02 is replaced with Yw[i] in cam16, but see 'note' in Fairchild's "Color Appearance Models" (p291 ni 3ed.)
        
        #--------------------------------------------
        # convert from cat02 sensor space to cone sensors (hpe):
        rgbp = math.dot23(mhpe_x_invmcat,rgbc).T
        
        #--------------------------------------------
        # apply Naka_rushton repsonse compression:        
        rgbpa = NK(FL*rgbp/100.0, forward)
        p = np.where(rgbp<0)
        rgbpa[p] = 0.1 - (NK(FL*np.abs(rgbp[p])/100.0, forward) - 0.1)
        
        #--------------------------------------------
        # Calculate achromatic signal:
        A  =  (2.0*rgbpa[...,0] + rgbpa[...,1] + (1.0/20.0)*rgbpa[...,2] - 0.305)*Nbb
                
        #--------------------------------------------
        # calculate initial opponent channels:
        a = rgbpa[...,0] - 12.0*rgbpa[...,1]/11.0 + rgbpa[...,2]/11.0
        b = (1.0/9.0)*(rgbpa[...,0] + rgbpa[...,1] - 2.0*rgbpa[...,2])

        #--------------------------------------------
        # calculate hue h and eccentricity factor, et:
        h = hue_angle(a,b, htype = 'deg')
        et = (1.0/4.0)*(np.cos(h*np.pi/180 + 2.0) + 3.8)
        
        #-------------------------------------------- 
        # calculate Hue quadrature (if requested in 'out'):
        if 'H' in outin:    
            H = hue_quadrature(h, unique_hue_data = 'ciecam02')
        else:
            H = None
        
        #--------------------------------------------   
        # calculate lightness, J:
        if ('J' in outin) | ('Q' in outin) | ('C' in outin) | ('M' in outin) | ('s' in outin) | ('aS' in outin) | ('aC' in outin) | ('aM' in outin):
            J = 100.0* (A / Aw)**(c*z)
         
        #-------------------------------------------- 
        # calculate brightness, Q:
        if ('Q' in outin) | ('s' in outin) | ('aS' in outin):
            Q = (4.0/c)* ((J/100.0)**0.5) * (Aw + 4.0)*(FL**0.25)
          
        #-------------------------------------------- 
        # calculate chroma, C:
        if ('C' in outin) | ('M' in outin) | ('s' in outin) | ('aS' in outin) | ('aC' in outin) | ('aM' in outin):
            t = ((50000.0/13.0)*Nc*Ncb*et*((a**2.0 + b**2.0)**0.5)) / (rgbpa[...,0] + rgbpa[...,1] + (21.0/20.0*rgbpa[...,2]))
            C = (t**0.9)*((J/100.0)**0.5) * (1.64 - 0.29**n)**0.73
               
        #-------------------------------------------- 
        # calculate colorfulness, M:
        if ('M' in outin) | ('s' in outin) | ('aM' in outin) | ('aS' in outin):
            M = C*FL**0.25
        
        #--------------------------------------------         
        # calculate saturation, s:
        if ('s' in outin) | ('aS' in outin):
            s = 100.0* (M/Q)**0.5
        
        #--------------------------------------------            
        # calculate cartesian coordinates:
        if ('aS' in outin):
             aS = s*np.cos(h*np.pi/180.0)
             bS = s*np.sin(h*np.pi/180.0)
        
        if ('aC' in outin):
             aC = C*np.cos(h*np.pi/180.0)
             bC = C*np.sin(h*np.pi/180.0)
             
        if ('aM' in outin):
             aM = M*np.cos(h*np.pi/180.0)
             bM = M*np.sin(h*np.pi/180.0)
         
        #-------------------------------------------- 
        if outin != ['J','aM','bM']:
            camout = eval('ajoin(('+','.join(outin)+'))')
        else:
            camout = ajoin((J,aM,bM))
        
        if camout.shape[1] == 1:
            camout = camout[:,0,:]

        
        return camout
        
    elif forward == False:

                       
            #--------------------------------------------
            # Get Lightness J from data:
            if ('J' in outin):
                J = data[...,0].copy()
            elif ('Q' in outin):
                Q = data[...,0].copy()
                J = 100.0*(Q / ((Aw + 4.0)*(FL**0.25)*(4.0/c)))**2.0
            else:
                raise Exception('No lightness or brightness values in data. Inverse CAM-transform not possible!')
                
                
            #--------------------------------------------
            # calculate hue h:
            h = hue_angle(data[...,1],data[...,2], htype = 'deg')
            
            #--------------------------------------------
            # calculate Colorfulness M or Chroma C or Saturation s from a,b:
            MCs = (data[...,1]**2.0 + data[...,2]**2.0)**0.5    
            
            
            if ('aS' in outin):
                Q = (4.0/c)* ((J/100.0)**0.5) * (Aw + 4.0)*(FL**0.25)
                M = Q*(MCs/100.0)**2.0 
                C = M/(FL**0.25)
             
            if ('aM' in outin): # convert M to C:
                C = MCs/(FL**0.25)
            
            if ('aC' in outin):
                C = MCs
                
            #--------------------------------------------
            # calculate t from J, C:
            t = (C / ((J/100.0)**(1.0/2.0) * (1.64 - 0.29**n)**0.73))**(1.0/0.9)

            #--------------------------------------------
            # calculate eccentricity factor, et:
            et = (np.cos(h*np.pi/180.0 + 2.0) + 3.8) / 4.0
            
            #--------------------------------------------
            # calculate achromatic signal, A:
            A = Aw*(J/100.0)**(1.0/(c*z))

            #--------------------------------------------
            # calculate temporary cart. co. at, bt and p1,p2,p3,p4,p5:
            at = np.cos(h*np.pi/180.0)
            bt = np.sin(h*np.pi/180.0)
            p1 = (50000.0/13.0)*Nc*Ncb*et/t
            p2 = A/Nbb + 0.305
            p3 = 21.0/20.0
            p4 = p1/bt
            p5 = p1/at

            #--------------------------------------------
            #q = np.where(np.abs(bt) < np.abs(at))[0]
            q = (np.abs(bt) < np.abs(at))

            b = p2*(2.0 + p3) * (460.0/1403.0) / (p4 + (2.0 + p3) * (220.0/1403.0) * (at/bt) - (27.0/1403.0) + p3*(6300.0/1403.0))
            a = b * (at/bt)
            
            a[q] = p2[q]*(2.0 + p3) * (460.0/1403.0) / (p5[q] + (2.0 + p3) * (220.0/1403.0) - ((27.0/1403.0) - p3*(6300.0/1403.0)) * (bt[q]/at[q]))
            b[q] = a[q] * (bt[q]/at[q])
            
            #--------------------------------------------
            # calculate post-adaptation values
            rpa = (460.0*p2 + 451.0*a + 288.0*b) / 1403.0
            gpa = (460.0*p2 - 891.0*a - 261.0*b) / 1403.0
            bpa = (460.0*p2 - 220.0*a - 6300.0*b) / 1403.0
            
            #--------------------------------------------
            # join values:
            rgbpa = ajoin((rpa,gpa,bpa))

            #--------------------------------------------
            # decompress signals:
            rgbp = (100.0/FL)*NK(rgbpa, forward)

            #--------------------------------------------
            # convert from to cone sensors (hpe) cat02 sensor space:
            rgbc = math.dot23(mcat_x_invmhpe,rgbp.T)
                            
            #--------------------------------------------
            # apply inverse von Kries cat:
            rgb = rgbc / ((D*Yw/rgbw)[...,None] + (1.0 - D))
            
            #--------------------------------------------
            # transform from cat sensor space to xyz:
            xyz = math.dot23(invmcat,rgb).T
            
            
            return xyz
Beispiel #12
0
def get_degree_of_adaptation(Dtype=None, **kwargs):
    """
    Calculates the degree of adaptation according to some function 
    published in literature. 
    
    Args:
        :Dtype:
            | None, optional
            |   If None: kwargs should contain 'D' with value.
            |   If 'manual: kwargs should contain 'D' with value.
            | If 'cat02' or 'cat16': kwargs should contain keys 'F' and 'La'.
            |     Calculate D according to CAT02 or CAT16 model:
            |        D = F*(1-(1/3.6)*numpy.exp((-La-42)/92))
            | If 'cmc': kwargs should contain 'La', 'La0'(or 'La2') and 'order'  
            |     for 'order' = '1>0': 'La' is set La1 and 'La0' to La0.
            |     for 'order' = '0>2': 'La' is set La0 and 'La0' to La1.
            |     for 'order' = '1>2': 'La' is set La1 and 'La2' to La0.
            |     D is calculated as follows:
            |        D = 0.08*numpy.log10(La1+La0)+0.76-0.45*(La1-La0)/(La1+La0)
            | If 'smet2017': kwargs should contain 'xyzw' and 'Dmax'
              (see Smet2017_D for more details).
            | If "? user defined", then D is calculated by:
            |        D = ndarray(eval(:Dtype:))  
    
    Returns:
         :D: 
            | ndarray with degree of adaptation values.
    Notes:
        1. D passes either right through or D is calculated following some 
           D-function (Dtype) published in literature.
        2. D is limited to values between zero and one
        3. If kwargs do not contain the required parameters, 
           an exception is raised.
    """
    try:
        if Dtype is None:
            PAR = ["D"]
            D = np.array([kwargs['D']])
        elif Dtype == 'manual':
            PAR = ["D"]
            D = np.array([kwargs['D']])
        elif (Dtype == 'cat02') | (Dtype == 'cat16'):
            PAR = ["F, La"]
            F = kwargs['F']

            if isinstance(F, str):  #CIECAM02 / CAT02 surround based F values
                if (F == 'avg') | (F == 'average'):
                    F = 1
                elif (F == 'dim'):
                    F = 0.9
                elif (F == 'dark'):
                    F = 0.8
                elif (F == 'disp') | (F == 'display'):
                    F = 0.0
                else:
                    F = eval(F)

            F = np.array([F])
            La = np.array([kwargs['La']])
            D = F * (1 - (1 / 3.6) * np.exp((-La - 42) / 92))
        elif Dtype == 'cmc':
            PAR = ["La, La0, order"]
            order = np.array([kwargs['order']])
            if order == '1>0':
                La1 = np.array([kwargs['La']])
                La0 = np.array([kwargs['La0']])
            elif order == '0>2':
                La0 = np.array([kwargs['La']])
                La1 = np.array([kwargs['La0']])
            elif order == '1>2':
                La1 = np.array([kwargs['La']])
                La0 = np.array([kwargs['La2']])
            D = 0.08 * np.log10(La1 + La0) + 0.76 - 0.45 * (La1 - La0) / (La1 +
                                                                          La0)

        elif 'smet2017':
            PAR = ['xyzw', 'Dmax']
            xyzw = np.array([kwargs['xyzw']])
            Dmax = np.array([kwargs['Dmax']])
            D = smet2017_D(xyzw, Dmax=Dmax)
        else:
            PAR = ["? user defined"]
            D = np.array(eval(Dtype))

        D[np.where(D < 0)] = 0
        D[np.where(D > 1)] = 1

    except:
        raise Exception(
            'degree_of_adaptation_D(): **kwargs does not contain the necessary parameters ({}) for Dtype = {}'
            .format(PAR, Dtype))

    return D
def DE2000(xyzt, xyzr, dtype = 'xyz', DEtype = 'jab', avg = None, avg_axis = 0, out = 'DEi',
              xyzwt = None, xyzwr = None, KLCH = None):
    
    """
    Calculate DE2000 color difference.
    
    Args:
        :xyzt: 
            | ndarray with tristimulus values of test data.
        :xyzr:
            | ndarray with tristimulus values of reference data.
        :dtype:
            | 'xyz' or 'lab', optional
            | Specifies data type in :xyzt: and :xyzr:.
        :xyzwt:
            | None or ndarray, optional
            |   White point tristimulus values of test data
            |   None defaults to the one set in lx.xyz_to_lab()
        :xyzwr:
            | None or ndarray, optional
            |    Whitepoint tristimulus values of reference data
            |    None defaults to the one set in lx.xyz_to_lab()
        :DEtype:
            | 'jab' or str, optional
            | Options: 
            |    - 'jab' : calculates full color difference over all 3 dimensions.
            |    - 'ab'  : calculates chromaticity difference.
            |    - 'j'   : calculates lightness or brightness difference 
            |             (depending on :outin:).
            |    - 'j,ab': calculates both 'j' and 'ab' options 
                          and returns them as a tuple.
        :KLCH: 
            | None, optional
            | Weigths for L, C, H 
            | None: default to [1,1,1] 
        :avg:
            | None, optional
            | None: don't calculate average DE, 
            |       otherwise use function handle in :avg:.
        :avg_axis:
            | axis to calculate average over, optional
        :out: 
            | 'DEi' or str, optional
            | Requested output.
        
    Note:
        For the other input arguments, see specific color space used.
        
    Returns:
        :returns: 
            | ndarray with DEi [, DEa] or other as specified by :out:
            
    References:
        1. `Sharma, G., Wu, W., & Dalal, E. N. (2005). 
        The CIEDE2000 color‐difference formula: Implementation notes, 
        supplementary test data, and mathematical observations. 
        Color Research & Application, 30(1), 21–30. 
        <https://doi.org/10.1002/col.20070>`_
    """
    
    if KLCH is None:
        KLCH = [1,1,1]
    
    if dtype == 'xyz':
        labt = xyz_to_lab(xyzt, xyzw = xyzwt)
        labr = xyz_to_lab(xyzr, xyzw = xyzwr)
    else:
        labt = xyzt
        labr = xyzr
 
    Lt = labt[...,0:1]
    at = labt[...,1:2]
    bt = labt[...,2:3]
    Ct = np.sqrt(at**2 + bt**2)
    #ht = cam.hue_angle(at,bt,htype = 'rad')
    
    Lr = labr[...,0:1]
    ar = labr[...,1:2]
    br = labr[...,2:3]
    Cr = np.sqrt(ar**2 + br**2)
    #hr = cam.hue_angle(at,bt,htype = 'rad')
    
    # Step 1:
    Cavg = (Ct + Cr)/2
    G = 0.5*(1 - np.sqrt((Cavg**7.0)/((Cavg**7.0) + (25.0**7))))
    apt = (1 + G)*at
    apr = (1 + G)*ar
    
    Cpt = np.sqrt(apt**2 + bt**2)
    Cpr = np.sqrt(apr**2 + br**2)
    Cpprod = Cpt*Cpr


    hpt = cam.hue_angle(apt,bt, htype = 'deg')
    hpr = cam.hue_angle(apr,br, htype = 'deg')
    hpt[(apt==0)*(bt==0)] = 0
    hpr[(apr==0)*(br==0)] = 0
    
    # Step 2:
    dL = np.abs(Lr - Lt)
    dCp = np.abs(Cpr - Cpt)
    dhp_ = hpr - hpt  

    dhp = dhp_.copy()
    dhp[np.where(np.abs(dhp_) > 180)] = dhp[np.where(np.abs(dhp_) > 180)] - 360
    dhp[np.where(np.abs(dhp_) < -180)] = dhp[np.where(np.abs(dhp_) < -180)] + 360
    dhp[np.where(Cpprod == 0)] = 0

    #dH = 2*np.sqrt(Cpprod)*np.sin(dhp/2*np.pi/180)
    dH = deltaH(dhp, Cpprod, htype = 'deg')

    # Step 3:
    Lp = (Lr + Lt)/2
    Cp = (Cpr + Cpt)/2
    
    hps = hpt + hpr
    hp = (hpt + hpr)/2
    hp[np.where((np.abs(dhp_) > 180) & (hps < 360))] = hp[np.where((np.abs(dhp_) > 180) & (hps < 360))] + 180
    hp[np.where((np.abs(dhp_) > 180) & (hps >= 360))] = hp[np.where((np.abs(dhp_) > 180) & (hps >= 360))] - 180
    hp[np.where(Cpprod == 0)] = 0

    T = 1 - 0.17*np.cos((hp - 30)*np.pi/180) + 0.24*np.cos(2*hp*np.pi/180) +\
        0.32*np.cos((3*hp + 6)*np.pi/180) - 0.20*np.cos((4*hp - 63)*np.pi/180)
    dtheta = 30*np.exp(-((hp-275)/25)**2)
    RC = 2*np.sqrt((Cp**7)/((Cp**7) + (25**7)))
    SL = 1 + ((0.015*(Lp-50)**2)/np.sqrt(20 + (Lp - 50)**2))
    SC = 1 + 0.045*Cp
    SH = 1 + 0.015*Cp*T
    RT = -np.sin(2*dtheta*np.pi/180)*RC

    kL, kC, kH = KLCH
    
    DEi = ((dL/(kL*SL))**2 , (dCp/(kC*SC))**2 + (dH/(kH*SH))**2 + RT*(dCp/(kC*SC))*(dH/(kH*SH)))
    

    return _process_DEi(DEi, DEtype = DEtype, avg = avg, avg_axis = avg_axis, out = out)
Beispiel #14
0
def cam_sww16(data, dataw = None, Yb = 20.0, Lw = 400.0, Ccwb = None, relative = True, \
              parameters = None, inputtype = 'xyz', direction = 'forward', \
              cieobs = '2006_10'):
    """
    A simple principled color appearance model based on a mapping 
    of the Munsell color system.
    
    | This function implements the JOSA A (parameters = 'JOSA') published model. 
    
    Args:
        :data: 
            | ndarray with input tristimulus values 
            | or spectral data 
            | or input color appearance correlates
            | Can be of shape: (N [, xM], x 3), whereby: 
            | N refers to samples and M refers to light sources.
            | Note that for spectral input shape is (N x (M+1) x wl) 
        :dataw: 
            | None or ndarray, optional
            | Input tristimulus values or spectral data of white point.
            | None defaults to the use of CIE illuminant C.
        :Yb: 
            | 20.0, optional
            | Luminance factor of background (perfect white diffuser, Yw = 100)
        :Lw:
            | 400.0, optional
            | Luminance (cd/m²) of white point.
        :Ccwb:
            | None,  optional
            | Degree of cognitive adaptation (white point balancing)
            | If None: use [..,..] from parameters dict.
        :relative:
            | True or False, optional
            | True: xyz tristimulus values are relative (Yw = 100)
        :parameters:
            | None or str or dict, optional
            | Dict with model parameters.
            |    - None: defaults to luxpy.cam._CAM_SWW_2016_PARAMETERS['JOSA']
            |    - str: 'best-fit-JOSA' or 'best-fit-all-Munsell'
            |    - dict: user defined model parameters 
            |            (dict should have same structure)
        :inputtype:
            | 'xyz' or 'spd', optional
            | Specifies the type of input: 
            |     tristimulus values or spectral data for the forward mode.
        :direction:
            | 'forward' or 'inverse', optional
            |   -'forward': xyz -> cam_sww_2016
            |   -'inverse': cam_sww_2016 -> xyz 
        :cieobs:
            | '2006_10', optional
            | CMF set to use to perform calculations where spectral data 
              is involved (inputtype == 'spd'; dataw = None)
            | Other options: see luxpy._CMF['types']
    
    Returns:
        :returns: 
            | ndarray with color appearance correlates (:direction: == 'forward')
            |  or 
            | XYZ tristimulus values (:direction: == 'inverse')
    
    Notes:
        | This function implements the JOSA A (parameters = 'JOSA') 
          published model. 
        | With:
        |    1. A correction for the parameter 
        |         in Eq.4 of Fig. 11: 0.952 --> -0.952 
        |         
        |     2. The delta_ac and delta_bc white-balance shifts in Eq. 5e & 5f 
        |         should be: -0.028 & 0.821 
        |  
        |     (cfr. Ccwb = 0.66 in: 
        |         ab_test_out = ab_test_int - Ccwb*ab_gray_adaptation_field_int))
             
    References:
        1. `Smet, K. A. G., Webster, M. A., & Whitehead, L. A. (2016). 
        A simple principled approach for modeling and understanding uniform color metrics. 
        Journal of the Optical Society of America A, 33(3), A319–A331. 
        <https://doi.org/10.1364/JOSAA.33.00A319>`_

    """

    # get model parameters
    args = locals().copy() 
    if parameters is None:
        parameters = _CAM_SWW16_PARAMETERS['JOSA']
    if isinstance(parameters,str):
        parameters = _CAM_SWW16_PARAMETERS[parameters]
    parameters = put_args_in_db(parameters,args)  #overwrite parameters with other (not-None) args input 
      
    #unpack model parameters:
    Cc, Ccwb, Cf, Mxyz2lms, cLMS, cab_int, cab_out, calpha, cbeta,cga1, cga2, cgb1, cgb2, cl_int, clambda, lms0  = [parameters[x] for x in sorted(parameters.keys())]
    
    # setup default adaptation field:   
    if (dataw is None):
        dataw = _CIE_ILLUMINANTS['C'].copy() # get illuminant C
        xyzw = spd_to_xyz(dataw, cieobs = cieobs,relative=False) # get abs. tristimulus values
        if relative == False: #input is expected to be absolute
            dataw[1:] = Lw*dataw[1:]/xyzw[:,1:2] #dataw = Lw*dataw # make absolute
        else:
            dataw = dataw # make relative (Y=100)
        if inputtype == 'xyz':
            dataw = spd_to_xyz(dataw, cieobs = cieobs, relative = relative)

    # precomputations:
    Mxyz2lms = np.dot(np.diag(cLMS),math.normalize_3x3_matrix(Mxyz2lms, np.array([[1, 1, 1]]))) # normalize matrix for xyz-> lms conversion to ill. E weighted with cLMS   
    invMxyz2lms = np.linalg.inv(Mxyz2lms)
    MAab = np.array([clambda,calpha,cbeta])
    invMAab = np.linalg.inv(MAab)
    
    #initialize data and camout:
    data = np2d(data).copy() # stimulus data (can be upto NxMx3 for xyz, or [N x (M+1) x wl] for spd))
    dataw = np2d(dataw).copy() # white point (can be upto Nx3 for xyz, or [(N+1) x wl] for spd)

    # make axis 1 of dataw have 'same' dimensions as data:         
    if (data.ndim == 2): 
        data = np.expand_dims(data, axis = 1)  # add light source axis 1     

    if inputtype == 'xyz': 
        if dataw.shape[0] == 1: #make dataw have same lights source dimension size as data
            dataw = np.repeat(dataw,data.shape[1],axis=0)                
    else:
        if dataw.shape[0] == 2:
            dataw = np.vstack((dataw[0],np.repeat(dataw[1:], data.shape[1], axis = 0)))

    # Flip light source dim to axis 0:
    data = np.transpose(data, axes = (1,0,2))
  
    # Initialize output array:
    dshape = list(data.shape)
    dshape[-1] = 3 # requested number of correlates: l_int, a_int, b_int
    if (inputtype != 'xyz') & (direction == 'forward'):
        dshape[-2] = dshape[-2] - 1 # wavelength row doesn't count & only with forward can the input data be spectral
    camout = np.nan*np.ones(dshape)

    # apply forward/inverse model for each row in data:
    for i in range(data.shape[0]):

        # stage 1: calculate photon rates of stimulus and adapting field, lmst & lmsf:
        if (inputtype != 'xyz'):            
            if relative == True:
                xyzw_abs = spd_to_xyz(np.vstack((dataw[0],dataw[i+1])), cieobs = cieobs, relative = False)
                dataw[i+1] = Lw*dataw[i+1]/xyzw_abs[0,1] # make absolute
            xyzw = spd_to_xyz(np.vstack((dataw[0],dataw[i+1])), cieobs = cieobs, relative = False)
            lmsw = 683.0*np.dot(Mxyz2lms,xyzw.T).T/_CMF[cieobs]['K']
            lmsf = (Yb/100.0)*lmsw # calculate adaptation field and convert to l,m,s
            if (direction == 'forward'):
                if relative == True:
                    data[i,1:,:] = Lw*data[i,1:,:]/xyzw_abs[0,1] # make absolute
                xyzt = spd_to_xyz(data[i], cieobs = cieobs, relative = False)/_CMF[cieobs]['K'] 
                lmst = 683.0*np.dot(Mxyz2lms,xyzt.T).T # convert to l,m,s
            else:
                lmst = lmsf # put lmsf in lmst for inverse-mode

        elif (inputtype == 'xyz'):
            if relative == True: 
                dataw[i] = Lw*dataw[i]/100.0 # make absolute
            lmsw = 683.0* np.dot(Mxyz2lms, dataw[i].T).T /_CMF[cieobs]['K']  # convert to lms
            lmsf = (Yb/100.0)*lmsw
            if (direction == 'forward'):
                if relative == True:
                    data[i] = Lw*data[i]/100.0 # make absolute
                lmst = 683.0* np.dot(Mxyz2lms, data[i].T).T /_CMF[cieobs]['K'] # convert to lms
            else:
                 lmst = lmsf # put lmsf in lmst for inverse-mode

        # stage 2: calculate cone outputs of stimulus lmstp
        lmstp = math.erf(Cc*(np.log(lmst/lms0) + Cf*np.log(lmsf/lms0)))
        lmsfp = math.erf(Cc*(np.log(lmsf/lms0) + Cf*np.log(lmsf/lms0)))
        lmstp = np.vstack((lmsfp,lmstp)) # add adaptation field lms temporarily to lmsp for quick calculation
        
        
        # stage 3: calculate optic nerve signals, lam*, alphp, betp:
        lstar,alph, bet = asplit(np.dot(MAab, lmstp.T).T)

        alphp = cga1[0]*alph
        alphp[alph<0] = cga1[1]*alph[alph<0]
        betp = cgb1[0]*bet
        betp[bet<0] = cgb1[1]*bet[bet<0]
        
        # stage 4: calculate recoded nerve signals, alphapp, betapp:
        alphpp = cga2[0]*(alphp + betp)
        betpp = cgb2[0]*(alphp - betp)

        # stage 5: calculate conscious color perception:
        lstar_int = cl_int[0]*(lstar + cl_int[1])
        alph_int = cab_int[0]*(np.cos(cab_int[1]*np.pi/180.0)*alphpp - np.sin(cab_int[1]*np.pi/180.0)*betpp)
        bet_int = cab_int[0]*(np.sin(cab_int[1]*np.pi/180.0)*alphpp + np.cos(cab_int[1]*np.pi/180.0)*betpp)
        lstar_out = lstar_int
        
        if direction == 'forward':
            if Ccwb is None:
                alph_out = alph_int - cab_out[0]
                bet_out = bet_int -  cab_out[1]
            else:
                Ccwb = Ccwb*np.ones((2))
                Ccwb[Ccwb<0.0] = 0.0
                Ccwb[Ccwb>1.0] = 1.0
                alph_out = alph_int - Ccwb[0]*alph_int[0] # white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation
                bet_out = bet_int -  Ccwb[1]*bet_int[0]
  
            camout[i] = np.vstack((lstar_out[1:],alph_out[1:],bet_out[1:])).T # stack together and remove adaptation field from vertical stack
        elif direction == 'inverse':
            labf_int = np.hstack((lstar_int[0],alph_int[0],bet_int[0]))
            
            # get lstar_out, alph_out & bet_out for data:
            lstar_out, alph_out, bet_out = asplit(data[i])
        
            # stage 5 inverse: 
            # undo cortical white-balance:
            if Ccwb is None:
                alph_int = alph_out + cab_out[0]
                bet_int = bet_out +  cab_out[1]
            else:
                Ccwb = Ccwb*np.ones((2))
                Ccwb[Ccwb<0.0] = 0.0
                Ccwb[Ccwb>1.0] = 1.0
                alph_int = alph_out + Ccwb[0]*alph_int[0] #  inverse white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation
                bet_int = bet_out +  Ccwb[1]*bet_int[0]

            lstar_int = lstar_out
            alphpp = (1.0 / cab_int[0]) * (np.cos(-cab_int[1]*np.pi/180.0)*alph_int - np.sin(-cab_int[1]*np.pi/180.0)*bet_int)
            betpp = (1.0 / cab_int[0]) * (np.sin(-cab_int[1]*np.pi/180.0)*alph_int + np.cos(-cab_int[1]*np.pi/180.0)*bet_int)
            lstar_int = lstar_out
            lstar = (lstar_int /cl_int[0]) - cl_int[1] 
            
            # stage 4 inverse:
            alphp = 0.5*(alphpp/cga2[0] + betpp/cgb2[0])  # <-- alphpp = (Cga2.*(alphp+betp));
            betp = 0.5*(alphpp/cga2[0] - betpp/cgb2[0]) # <-- betpp = (Cgb2.*(alphp-betp));

            # stage 3 invers:
            alph = alphp/cga1[0]
            bet = betp/cgb1[0]
            sa = np.sign(cga1[1])
            sb = np.sign(cgb1[1])
            alph[(sa*alphp)<0.0] = alphp[(sa*alphp)<0] / cga1[1] 
            bet[(sb*betp)<0.0] = betp[(sb*betp)<0] / cgb1[1] 
            lab = ajoin((lstar, alph, bet))
            
            # stage 2 inverse:
            lmstp = np.dot(invMAab,lab.T).T 
            lmstp[lmstp<-1.0] = -1.0
            lmstp[lmstp>1.0] = 1.0

            lmstp = math.erfinv(lmstp) / Cc - Cf*np.log(lmsf/lms0)
            lmst = np.exp(lmstp) * lms0
            
            # stage 1 inverse:
            xyzt =  np.dot(invMxyz2lms,lmst.T).T   
            
            if relative == True:
                xyzt = (100.0/Lw) * xyzt
            
            camout[i] = xyzt
    
#    if flipaxis0and1 == True: # loop over shortest dim.
#        camout = np.transpose(camout, axes = (1,0,2))
    
    # Flip light source dim back to axis 1:
    camout = np.transpose(camout, axes = (1,0,2))

    if camout.shape[0] == 1:
        camout = np.squeeze(camout,axis = 0)
        
    return camout