def _polyarea3D(xyz): x, y, z = asplit(xyz) RY = np.sqrt((x[0] - x[1])**2 + (y[0] - y[1])**2 + (z[0] - z[1])**2) YG = np.sqrt((x[1] - x[2])**2 + (y[1] - y[2])**2 + (z[1] - z[2])**2) GR = np.sqrt((x[2] - x[0])**2 + (y[2] - y[0])**2 + (z[2] - z[0])**2) RB = np.sqrt((x[0] - x[3])**2 + (y[0] - y[3])**2 + (z[0] - z[3])**2) BG = np.sqrt((x[2] - x[3])**2 + (y[2] - y[3])**2 + (z[2] - z[3])**2) S1 = (RY + YG + GR) / 2 S2 = (RB + BG + GR) / 2 GA1 = np.sqrt(S1 * (S1 - RY) * (S1 - YG) * (S1 - GR)) GA2 = np.sqrt(S2 * (S2 - RB) * (S2 - BG) * (S2 - GR)) GA = GA1 + GA2 return GA
def smet2017_D(xyzw, Dmax=None): """ Calculate the degree of adaptation based on chromaticity following Smet et al. (2017) Args: :xyzw: | ndarray with white point data (CIE 1964 10° XYZs!!) :Dmax: | None or float, optional | Defaults to 0.6539 (max D obtained under experimental conditions, | but probably too low due to dark surround leading to incomplete | chromatic adaptation even for neutral illuminants | resulting in background luminance (fov~50°) of 760 cd/m²)) Returns: :D: | ndarray with degrees of adaptation References: 1. `Smet, K.A.G.*, Zhai, Q., Luo, M.R., Hanselaer, P., (2017), Study of chromatic adaptation using memory color matches, Part II: colored illuminants, Opt. Express, 25(7), pp. 8350-8365. <https://www.osapublishing.org/oe/abstract.cfm?uri=oe-25-7-8350&origin=search)>`_ """ # Convert xyzw to log-compressed Macleod_Boyton coordinates: Vl, rl, bl = asplit( np.log(xyz_to_Vrb_mb(xyzw, M=_MCATS['hpe'])) ) # force use of HPE matrix (which was the one used when deriving the model parameters!!) # apply Dmodel (technically only for cieobs = '1964_10') pD = (1.0e7) * np.array([ 0.021081326530436, 4.751255762876845, -0.000000071025181, -0.000000063627042, -0.146952821492957, 3.117390441655821 ]) #D model parameters for gaussian model in log(MB)-space (july 2016) if Dmax is None: Dmax = 0.6539 # max D obtained under experimental conditions (probably too low due to dark surround leading to incomplete chromatic adaptation even for neutral illuminants resulting in background luminance (fov~50°) of 760 cd/m²) return Dmax * math.bvgpdf(x=rl, y=bl, mu=pD[2:4], sigmainv=np.linalg.inv( np.array([[pD[0], pD[4]], [pD[4], pD[1]] ])))**pD[5]
def spd_to_mcri(SPD, D = 0.9, E = None, Yb = 20.0, out = 'Rm', wl = None): """ Calculates the MCRI or Memory Color Rendition Index, Rm Args: :SPD: | ndarray with spectral data (can be multiple SPDs, | first axis are the wavelengths) :D: | 0.9, optional | Degree of adaptation. :E: | None, optional | Illuminance in lux | (used to calculate La = (Yb/100)*(E/pi) to then calculate D | following the 'cat02' model). | If None: the degree is determined by :D: | If (:E: is not None) & (:Yb: is None): :E: is assumed to contain | the adapting field luminance La (cd/m²). :Yb: | 20.0, optional | Luminance factor of background. (used when calculating La from E) | If None, E contains La (cd/m²). :out: | 'Rm' or str, optional | Specifies requested output (e.g. 'Rm,Rmi,cct,duv') :wl: | None, optional | Wavelengths (or [start, end, spacing]) to interpolate the SPDs to. | None: default to no interpolation Returns: :returns: | float or ndarray with MCRI Rm for :out: 'Rm' | Other output is also possible by changing the :out: str value. References: 1. `K.A.G. Smet, W.R. Ryckaert, M.R. Pointer, G. Deconinck, P. Hanselaer,(2012) “A memory colour quality metric for white light sources,” Energy Build., vol. 49, no. C, pp. 216–225. <http://www.sciencedirect.com/science/article/pii/S0378778812000837>`_ """ SPD = np2d(SPD) if wl is not None: SPD = spd(data = SPD, interpolation = _S_INTERP_TYPE, kind = 'np', wl = wl) # unpack metric default values: avg, catf, cieobs, cri_specific_pars, cspace, ref_type, rg_pars, sampleset, scale = [_MCRI_DEFAULTS[x] for x in sorted(_MCRI_DEFAULTS.keys())] similarity_ai = cri_specific_pars['similarity_ai'] Mxyz2lms = cspace['Mxyz2lms'] scale_fcn = scale['fcn'] scale_factor = scale['cfactor'] sampleset = eval(sampleset) # A. calculate xyz: xyzti, xyztw = spd_to_xyz(SPD, cieobs = cieobs['xyz'], rfl = sampleset, out = 2) if 'cct' in out.split(','): cct, duv = xyz_to_cct(xyztw, cieobs = cieobs['cct'], out = 'cct,duv',mode = 'lut') # B. perform chromatic adaptation to adopted whitepoint of ipt color space, i.e. D65: if catf is not None: Dtype_cat, F, Yb_cat, catmode_cat, cattype_cat, mcat_cat, xyzw_cat = [catf[x] for x in sorted(catf.keys())] # calculate degree of adaptationn D: if E is not None: if Yb is not None: La = (Yb/100.0)*(E/np.pi) else: La = E D = cat.get_degree_of_adaptation(Dtype = Dtype_cat, F = F, La = La) else: Dtype_cat = None # direct input of D if (E is None) and (D is None): D = 1.0 # set degree of adaptation to 1 ! if D > 1.0: D = 1.0 if D < 0.6: D = 0.6 # put a limit on the lowest D # apply cat: xyzti = cat.apply(xyzti, cattype = cattype_cat, catmode = catmode_cat, xyzw1 = xyztw,xyzw0 = None, xyzw2 = xyzw_cat, D = D, mcat = [mcat_cat], Dtype = Dtype_cat) xyztw = cat.apply(xyztw, cattype = cattype_cat, catmode = catmode_cat, xyzw1 = xyztw,xyzw0 = None, xyzw2 = xyzw_cat, D = D, mcat = [mcat_cat], Dtype = Dtype_cat) # C. convert xyz to ipt and split: ipt = xyz_to_ipt(xyzti, cieobs = cieobs['xyz'], M = Mxyz2lms) #input matrix as published in Smet et al. 2012, Energy and Buildings I,P,T = asplit(ipt) # D. calculate specific (hue dependent) similarity indicators, Si: if len(xyzti.shape) == 3: ai = np.expand_dims(similarity_ai, axis = 1) else: ai = similarity_ai a1,a2,a3,a4,a5 = asplit(ai) mahalanobis_d2 = (a3*np.power((P - a1),2.0) + a4*np.power((T - a2),2.0) + 2.0*a5*(P-a1)*(T-a2)) if (len(mahalanobis_d2.shape)==3) & (mahalanobis_d2.shape[-1]==1): mahalanobis_d2 = mahalanobis_d2[:,:,0].T Si = np.exp(-0.5*mahalanobis_d2) # E. calculate general similarity indicator, Sa: Sa = avg(Si, axis = 0,keepdims = True) # F. rescale similarity indicators (Si, Sa) with a 0-1 scale to memory color rendition indices (Rmi, Rm) with a 0 - 100 scale: Rmi = scale_fcn(np.log(Si),scale_factor = scale_factor) Rm = np2d(scale_fcn(np.log(Sa),scale_factor = scale_factor)) # G. calculate Rg (polyarea of test / polyarea of memory colours): if 'Rg' in out.split(','): I = I[...,None] #broadcast_shape(I, target_shape = None,expand_2d_to_3d = 0) a1 = a1[:,None]*np.ones(I.shape)#broadcast_shape(a1, target_shape = None,expand_2d_to_3d = 0) a2 = a2[:,None]*np.ones(I.shape) #broadcast_shape(a2, target_shape = None,expand_2d_to_3d = 0) a12 = np.concatenate((a1,a2),axis=2) #broadcast_shape(np.hstack((a1,a2)), target_shape = ipt.shape,expand_2d_to_3d = 0) ipt_mc = np.concatenate((I,a12),axis=2) nhbins, normalize_gamut, normalized_chroma_ref, start_hue = [rg_pars[x] for x in sorted(rg_pars.keys())] hue_bin_data = _get_hue_bin_data(ipt, ipt_mc, start_hue = start_hue, nhbins = nhbins, normalized_chroma_ref = normalized_chroma_ref) Rg = _hue_bin_data_to_rg(hue_bin_data) if (out != 'Rm'): return eval(out) else: return Rm
def mahalanobis2(x, y = None, z = None, mu = None, sigmainv = None): """ Evaluate the squared mahalanobis distance Args: :x: | scalar or list or ndarray (.ndim = 1 or 2) with x(y)-coordinates at which to evaluate the mahalanobis distance squared. :y: | None or scalar or list or ndarray (.ndim = 1) with y-coordinates at which to evaluate the mahalanobis distance squared, optional. | If :y: is None, :x: should be a 2d array. :z: | None or scalar or list or ndarray (.ndim = 1) with z-coordinates at which to evaluate the mahalanobis distance squared, optional. | If :z: is None & :y: is None, then :x: should be a 2d array. :mu: | None or ndarray (.ndim = 1) with center coordinates of the mahalanobis ellipse, optional. | None defaults to zeros(2) or zeros(3). :sigmainv: | None or ndarray with 'inverse covariance matrix', optional | Determines the shape and orientation of the PD. | None default to np.eye(2) or eye(3). Returns: :returns: | ndarray with magnitude of mahalanobis2(x,y[,z]) """ if (y is None) & (z is None): p = x.shape[-1] elif (z is None): p = x.shape[-1] if (y is None) else 2 elif (z is not None): p = 3 if (y is not None) else 2 if mu is None: mu = np.zeros(p) if sigmainv is None: sigmainv = np.eye(p) x = np2d(x) mu = np2d(mu) if (y is None) & (z is None): x = x - mu if p == 2: x, y = asplit(x) elif p==3: x, y, z = asplit(x) elif (z is None): if y is None: x = x - mu x, y = asplit(x) else: x = x - mu[...,0] # center data on mu y = np2d(y) - mu[...,1] # center data on mu elif (z is not None): if (y is not None): x = x - mu[0] # center data on mu y = np2d(y) - mu[...,1] # center data on mu z = np2d(z) - mu[...,2] # center data on mu else: x = x - mu[...,0] # center data on mu y = np2d(z) - mu[...,1] # center data on mu if p == 2: return (sigmainv[0,0] * (x**2.0) + sigmainv[1,1] * (y**2.0) + 2.0*sigmainv[0,1]*(x*y)) else: return (sigmainv[0,0] * (x**2.0) + sigmainv[1,1] * (y**2.0) + 2.0*sigmainv[0,1]*(x*y) + sigmainv[2,2] * (z**2.0) + 2.0*sigmainv[0,2]*(x*z) + 2.0*sigmainv[1,2]*(y*z))
def plot_chromaticity_diagram_colors(diagram_samples = 256, diagram_opacity = 1.0, diagram_lightness = 0.25,\ cieobs = _CIEOBS, cspace = 'Yxy', cspace_pars = {},\ show = True, axh = None,\ show_grid = False, label_fontname = 'Times New Roman', label_fontsize = 12,\ **kwargs): """ Plot the chromaticity diagram colors. Args: :diagram_samples: | 256, optional | Sampling resolution of color space. :diagram_opacity: | 1.0, optional | Sets opacity of chromaticity diagram :diagram_lightness: | 0.25, optional | Sets lightness of chromaticity diagram :axh: | None or axes handle, optional | Determines axes to plot data in. | None: make new figure. :show: | True or False, optional | Invoke matplotlib.pyplot.show() right after plotting :cieobs: | luxpy._CIEOBS or str, optional | Determines CMF set to calculate spectrum locus or other. :cspace: | luxpy._CSPACE or str, optional | Determines color space / chromaticity diagram to plot data in. | Note that data is expected to be in specified :cspace: :cspace_pars: | {} or dict, optional | Dict with parameters required by color space specified in :cspace: | (for use with luxpy.colortf()) :show_grid: | False, optional | Show grid (True) or not (False) :label_fontname: | 'Times New Roman', optional | Sets font type of axis labels. :label_fontsize: | 12, optional | Sets font size of axis labels. :kwargs: | additional keyword arguments for use with matplotlib.pyplot. Returns: """ if isinstance(cieobs, str): SL = _CMF[cieobs]['bar'][1:4].T else: SL = cieobs[1:4].T SL = 100.0 * SL / (SL[:, 1, None] + _EPS) SL = SL[SL.sum(axis=1) > 0, :] # avoid div by zero in xyz-to-Yxy conversion SL = colortf(SL, tf=cspace, tfa0=cspace_pars) plambdamax = SL[:, 1].argmax() SL = np.vstack( (SL[:(plambdamax + 1), :], SL[0]) ) # add lowest wavelength data and go to max of gamut in x (there is a reversal for some cmf set wavelengths >~700 nm!) Y, x, y = asplit(SL) SL = np.vstack((x, y)).T # create grid for conversion to srgb offset = _EPS min_x = min(offset, x.min()) max_x = max(1, x.max()) min_y = min(offset, y.min()) max_y = max(1, y.max()) ii, jj = np.meshgrid( np.linspace(min_x - offset, max_x + offset, int(diagram_samples)), np.linspace(max_y + offset, min_y - offset, int(diagram_samples))) ij = np.dstack((ii, jj)) ij[ij == 0] = offset ij2D = ij.reshape((diagram_samples**2, 2)) ij2D = np.hstack((diagram_lightness * 100 * np.ones( (ij2D.shape[0], 1)), ij2D)) xyz = colortf(ij2D, tf=cspace + '>xyz', tfa0=cspace_pars) xyz[xyz < 0] = 0 xyz[np.isinf(xyz.sum(axis=1)), :] = np.nan xyz[np.isnan(xyz.sum(axis=1)), :] = offset srgb = xyz_to_srgb(xyz) srgb = srgb / srgb.max() srgb = srgb.reshape((diagram_samples, diagram_samples, 3)) if show == True: if axh is None: fig = plt.figure() axh = fig.add_subplot(111) polygon = Polygon(SL, facecolor='none', edgecolor='none') axh.add_patch(polygon) image = axh.imshow(srgb, interpolation='bilinear', extent=(min_x, max_x, min_y - 0.05, max_y), clip_path=None, alpha=diagram_opacity) image.set_clip_path(polygon) axh.plot(x, y, color='darkgray') if (cspace == 'Yxy') & (isinstance(cieobs, str)): axh.set_xlim([0, 1]) axh.set_ylim([0, 1]) elif (cspace == 'Yuv') & (isinstance(cieobs, str)): axh.set_xlim([0, 0.6]) axh.set_ylim([0, 0.6]) if (cspace is not None): xlabel = _CSPACE_AXES[cspace][1] ylabel = _CSPACE_AXES[cspace][2] if (label_fontname is not None) & (label_fontsize is not None): axh.set_xlabel(xlabel, fontname=label_fontname, fontsize=label_fontsize) axh.set_ylabel(ylabel, fontname=label_fontname, fontsize=label_fontsize) if show_grid == True: axh.grid(True) #plt.show() return axh else: return None
def plotSL(cieobs =_CIEOBS, cspace = _CSPACE, DL = False, BBL = True, D65 = False,\ EEW = False, cctlabels = False, axh = None, show = True,\ cspace_pars = {}, formatstr = 'k-',\ diagram_colors = False, diagram_samples = 100, diagram_opacity = 1.0,\ diagram_lightness = 0.25,\ **kwargs): """ Plot spectrum locus for cieobs in cspace. Args: :DL: | True or False, optional | True plots Daylight Locus as well. :BBL: | True or False, optional | True plots BlackBody Locus as well. :D65: | False or True, optional | True plots D65 chromaticity as well. :EEW: | False or True, optional | True plots Equi-Energy-White chromaticity as well. :cctlabels: | False or True, optional | Add cct text labels at various points along the blackbody locus. :axh: | None or axes handle, optional | Determines axes to plot data in. | None: make new figure. :show: | True or False, optional | Invoke matplotlib.pyplot.show() right after plotting :cieobs: | luxpy._CIEOBS or str, optional | Determines CMF set to calculate spectrum locus or other. :cspace: | luxpy._CSPACE or str, optional | Determines color space / chromaticity diagram to plot data in. | Note that data is expected to be in specified :cspace: :formatstr: | 'k-' or str, optional | Format str for plotting (see ?matplotlib.pyplot.plot) :cspace_pars: | {} or dict, optional | Dict with parameters required by color space specified in :cspace: | (for use with luxpy.colortf()) :diagram_colors: | False, optional | True: plot colored chromaticity diagram. :diagram_samples: | 256, optional | Sampling resolution of color space. :diagram_opacity: | 1.0, optional | Sets opacity of chromaticity diagram :diagram_lightness: | 0.25, optional | Sets lightness of chromaticity diagram :kwargs: | additional keyword arguments for use with matplotlib.pyplot. Returns: :returns: | None (:show: == True) | or | handle to current axes (:show: == False) """ if isinstance(cieobs, str): SL = _CMF[cieobs]['bar'][1:4].T else: SL = cieobs[1:4].T SL = 100.0 * SL / (SL[:, 1, None] + _EPS) SL = SL[SL.sum(axis=1) > 0, :] # avoid div by zero in xyz-to-Yxy conversion SL = colortf(SL, tf=cspace, tfa0=cspace_pars) plambdamax = SL[:, 1].argmax() SL = np.vstack( (SL[:(plambdamax + 1), :], SL[0]) ) # add lowest wavelength data and go to max of gamut in x (there is a reversal for some cmf set wavelengths >~700 nm!) Y, x, y = asplit(SL) showcopy = show if np.any([DL, BBL, D65, EEW]): show = False if diagram_colors == True: axh_ = plot_chromaticity_diagram_colors(axh = axh, show = diagram_colors, cspace = cspace, cieobs = cieobs,\ cspace_pars = cspace_pars,\ diagram_samples = diagram_samples,\ diagram_opacity = diagram_opacity,\ diagram_lightness = diagram_lightness,\ label_fontname = None, label_fontsize = None) else: axh_ = axh axh_ = plot_color_data(x, y, axh=axh_, cieobs=cieobs, cspace=cspace, show=show, formatstr=formatstr, **kwargs) if DL == True: if 'label' in kwargs.keys(): # avoid label also being used for DL kwargs.pop('label') plotDL(ccts=None, cieobs=cieobs, cspace=cspace, axh=axh_, show=show, cspace_pars=cspace_pars, formatstr='k:', **kwargs) if BBL == True: if 'label' in kwargs.keys(): # avoid label also being used for BB kwargs.pop('label') plotBB(ccts=None, cieobs=cieobs, cspace=cspace, axh=axh_, show=show, cspace_pars=cspace_pars, cctlabels=cctlabels, formatstr='k-.', **kwargs) if D65 == True: YxyD65 = colortf(spd_to_xyz(_CIE_ILLUMINANTS['D65'], cieobs=cieobs), tf=cspace, tfa0=cspace_pars) axh.plot(YxyD65[..., 1], YxyD65[..., 2], 'bo') if EEW == True: YxyEEW = colortf(spd_to_xyz(_CIE_ILLUMINANTS['E'], cieobs=cieobs), tf=cspace, tfa0=cspace_pars) axh.plot(YxyEEW[..., 1], YxyEEW[..., 2], 'ko') if showcopy == False: return axh_ else: plt.show()
def plotBB(ccts=None, cieobs=_CIEOBS, cspace=_CSPACE, axh=None, cctlabels=True, show=True, cspace_pars={}, formatstr='k-', **kwargs): """ Plot blackbody locus. Args: :ccts: | None or list[float], optional | None defaults to [1000 to 1e19 K]. | Range: | [1000,1500,2000,2500,3000,3500,4000,5000,6000,8000,10000] | + [15000 K to 1e19 K] in 100 steps on a log10 scale :cctlabels: | True or False, optional | Add cct text labels at various points along the blackbody locus. :axh: | None or axes handle, optional | Determines axes to plot data in. | None: make new figure. :show: | True or False, optional | Invoke matplotlib.pyplot.show() right after plotting :cieobs: | luxpy._CIEOBS or str, optional | Determines CMF set to calculate spectrum locus or other. :cspace: | luxpy._CSPACE or str, optional | Determines color space / chromaticity diagram to plot data in. | Note that data is expected to be in specified :cspace: :formatstr: | 'k-' or str, optional | Format str for plotting (see ?matplotlib.pyplot.plot) :cspace_pars: | {} or dict, optional | Dict with parameters required by color space specified in :cspace: | (for use with luxpy.colortf()) :kwargs: | additional keyword arguments for use with matplotlib.pyplot. Returns: :returns: | None (:show: == True) | or | handle to current axes (:show: == False) """ if ccts is None: ccts1 = np.array([ 1000.0, 1500.0, 2000.0, 2500.0, 3000.0, 3500.0, 4000.0, 5000.0, 6000.0, 8000.0, 10000.0 ]) ccts2 = 10**np.linspace(np.log10(15000.0), np.log10(10.0**19.0), 100) ccts = np.hstack((ccts1, ccts2)) else: ccts1 = None BB = cri_ref(ccts, ref_type='BB') xyz = spd_to_xyz(BB, cieobs=cieobs) Yxy = colortf(xyz, tf=cspace, tfa0=cspace_pars) Y, x, y = asplit(Yxy) axh = plot_color_data(x, y, axh=axh, cieobs=cieobs, cspace=cspace, show=show, formatstr=formatstr, **kwargs) if (cctlabels == True) & (ccts1 is not None): for i in range(ccts1.shape[0]): if ccts1[i] >= 3000.0: if i % 2 == 0.0: axh.plot(x[i], y[i], 'k+', color='0.5') axh.text(x[i] * 1.05, y[i] * 0.95, '{:1.0f}K'.format(ccts1[i]), color='0.5') axh.plot(x[-1], y[-1], 'k+', color='0.5') axh.text(x[-1] * 1.05, y[-1] * 0.95, '{:1.0e}K'.format(ccts[-1]), color='0.5') if show == False: return axh
def plotDL(ccts = None, cieobs =_CIEOBS, cspace = _CSPACE, axh = None, \ show = True, force_daylight_below4000K = False, cspace_pars = {}, \ formatstr = 'k-', **kwargs): """ Plot daylight locus. Args: :ccts: | None or list[float], optional | None defaults to [4000 K to 1e19 K] in 100 steps on a log10 scale. :force_daylight_below4000K: | False or True, optional | CIE daylight phases are not defined below 4000 K. | If True plot anyway. :axh: | None or axes handle, optional | Determines axes to plot data in. | None: make new figure. :show: | True or False, optional | Invoke matplotlib.pyplot.show() right after plotting :cieobs: | luxpy._CIEOBS or str, optional | Determines CMF set to calculate spectrum locus or other. :cspace: | luxpy._CSPACE or str, optional | Determines color space / chromaticity diagram to plot data in. | Note that data is expected to be in specified :cspace: :formatstr: | 'k-' or str, optional | Format str for plotting (see ?matplotlib.pyplot.plot) :cspace_pars: | {} or dict, optional | Dict with parameters required by color space specified in :cspace: | (for use with luxpy.colortf()) :kwargs: | additional keyword arguments for use with matplotlib.pyplot. Returns: :returns: | None (:show: == True) | or | handle to current axes (:show: == False) """ if ccts is None: ccts = 10**np.linspace(np.log10(4000.0), np.log10(10.0**19.0), 100) xD, yD = daylightlocus(ccts, cieobs=cieobs, force_daylight_below4000K=force_daylight_below4000K) Y = 100 * np.ones(xD.shape) DL = Yxy_to_xyz(np.vstack((Y, xD, yD)).T) DL = colortf(DL, tf=cspace, tfa0=cspace_pars) Y, x, y = asplit(DL) axh = plot_color_data(x, y, axh=axh, cieobs=cieobs, cspace=cspace, show=show, formatstr=formatstr, **kwargs) if show == False: return axh
def xyz_to_Ydlep(xyz, cieobs=_CIEOBS, xyzw=_COLORTF_DEFAULT_WHITE_POINT, flip_axes=False, SL_max_lambda=None, **kwargs): """ Convert XYZ tristimulus values to Y, dominant (complementary) wavelength and excitation purity. Args: :xyz: | ndarray with tristimulus values :xyzw: | None or ndarray with tristimulus values of a single (!) native white point, optional | None defaults to xyz of CIE D65 using the :cieobs: observer. :cieobs: | luxpy._CIEOBS, optional | CMF set to use when calculating spectrum locus coordinates. :flip_axes: | False, optional | If True: flip axis 0 and axis 1 in Ydelep to increase speed of loop in function. | (single xyzw with is not flipped!) :SL_max_lambda: | None or float, optional | Maximum wavelength of spectrum locus before it turns back on itelf in the high wavelength range (~700 nm) Returns: :Ydlep: | ndarray with Y, dominant (complementary) wavelength | and excitation purity """ xyz3 = np3d(xyz).copy().astype(np.float) # flip axis so that shortest dim is on axis0 (save time in looping): if (xyz3.shape[0] < xyz3.shape[1]) & (flip_axes == True): axes12flipped = True xyz3 = xyz3.transpose((1, 0, 2)) else: axes12flipped = False # convert xyz to Yxy: Yxy = xyz_to_Yxy(xyz3) Yxyw = xyz_to_Yxy(xyzw) # get spectrum locus Y,x,y and wavelengths: SL = _CMF[cieobs]['bar'] SL = SL[:, SL[1:].sum(axis=0) > 0] # avoid div by zero in xyz-to-Yxy conversion wlsl = SL[0] Yxysl = xyz_to_Yxy(SL[1:4].T)[:, None] # Get maximum wavelength of spectrum locus (before it turns back on itself) if SL_max_lambda is None: pmaxlambda = Yxysl[..., 1].argmax() # lambda with largest x value dwl = np.diff( Yxysl[:, 0, 1]) # spectrumlocus in that range should have increasing x dwl[wlsl[:-1] < 600] = 10000 pmaxlambda = np.where( dwl <= 0)[0][0] # Take first element with zero or <zero slope else: pmaxlambda = np.abs(wlsl - SL_max_lambda).argmin() Yxysl = Yxysl[:(pmaxlambda + 1), :] wlsl = wlsl[:(pmaxlambda + 1)] # center on xyzw: Yxy = Yxy - Yxyw Yxysl = Yxysl - Yxyw Yxyw = Yxyw - Yxyw #split: Y, x, y = asplit(Yxy) Yw, xw, yw = asplit(Yxyw) Ysl, xsl, ysl = asplit(Yxysl) # calculate hue: h = math.positive_arctan(x, y, htype='deg') hsl = math.positive_arctan(xsl, ysl, htype='deg') hsl_max = hsl[0] # max hue angle at min wavelength hsl_min = hsl[-1] # min hue angle at max wavelength if hsl_min < hsl_max: hsl_min += 360 dominantwavelength = np.empty(Y.shape) purity = np.empty(Y.shape) for i in range(xyz3.shape[1]): # find index of complementary wavelengths/hues: pc = np.where( (h[:, i] > hsl_max) & (h[:, i] < hsl_min) ) # hue's requiring complementary wavelength (purple line) h[:, i][pc] = h[:, i][pc] - np.sign( h[:, i][pc] - 180.0 ) * 180.0 # add/subtract 180° to get positive complementary wavelength # find 2 closest enclosing hues in sl: #hslb,hib = meshblock(hsl,h[:,i:i+1]) hib, hslb = np.meshgrid(h[:, i:i + 1], hsl) dh = (hslb - hib) q1 = np.abs(dh).argmin(axis=0) # index of closest hue sign_q1 = np.sign(dh[q1])[0] dh[np.sign(dh) == sign_q1] = 1000000 # set all dh on the same side as q1 to a very large value q2 = np.abs(dh).argmin( axis=0) # index of second closest (enclosing) hue # # Test changes to code: # print('wls',i, wlsl[q1],wlsl[q2]) # import matplotlib.pyplot as plt # plt.figure() # plt.plot(wlsl[:-1],np.diff(xsl[:,0]),'k.-') # plt.figure() # plt.plot(x[0,i],y[0,i],'k.'); plt.plot(xsl,ysl,'r.-');plt.plot(xsl[q1],ysl[q1],'b.');plt.plot(xsl[q2],ysl[q2],'g.');plt.plot(xsl[-1],ysl[-1],'c+') dominantwavelength[:, i] = wlsl[q1] + np.multiply( (h[:, i] - hsl[q1, 0]), np.divide((wlsl[q2] - wlsl[q1]), (hsl[q2, 0] - hsl[q1, 0])) ) # calculate wl corresponding to h: y = y1 + (x-x1)*(y2-y1)/(x2-x1) dominantwavelength[:, i][pc] = -dominantwavelength[:, i][ pc] #complementary wavelengths are specified by '-' sign # calculate excitation purity: x_dom_wl = xsl[q1, 0] + (xsl[q2, 0] - xsl[q1, 0]) * (h[:, i] - hsl[ q1, 0]) / (hsl[q2, 0] - hsl[q1, 0]) # calculate x of dom. wl y_dom_wl = ysl[q1, 0] + (ysl[q2, 0] - ysl[q1, 0]) * (h[:, i] - hsl[ q1, 0]) / (hsl[q2, 0] - hsl[q1, 0]) # calculate y of dom. wl d_wl = (x_dom_wl**2.0 + y_dom_wl**2.0)**0.5 # distance from white point to sl d = (x[:, i]**2.0 + y[:, i]**2.0)**0.5 # distance from white point to test point purity[:, i] = d / d_wl # correct for those test points that have a complementary wavelength # calculate intersection of line through white point and test point and purple line: xy = np.vstack((x[:, i], y[:, i])).T xyw = np.hstack((xw, yw)) xypl1 = np.hstack((xsl[0, None], ysl[0, None])) xypl2 = np.hstack((xsl[-1, None], ysl[-1, None])) da = (xy - xyw) db = (xypl2 - xypl1) dp = (xyw - xypl1) T = np.array([[0.0, -1.0], [1.0, 0.0]]) dap = np.dot(da, T) denom = np.sum(dap * db, axis=1, keepdims=True) num = np.sum(dap * dp, axis=1, keepdims=True) xy_linecross = (num / denom) * db + xypl1 d_linecross = np.atleast_2d( (xy_linecross[:, 0]**2.0 + xy_linecross[:, 1]**2.0)**0.5).T #[0] purity[:, i][pc] = d[pc] / d_linecross[pc][:, 0] Ydlep = np.dstack((xyz3[:, :, 1], dominantwavelength, purity)) if axes12flipped == True: Ydlep = Ydlep.transpose((1, 0, 2)) else: Ydlep = Ydlep.transpose((0, 1, 2)) return Ydlep.reshape(xyz.shape)
def xyz_to_Ydlep_(xyz, cieobs=_CIEOBS, xyzw=_COLORTF_DEFAULT_WHITE_POINT, flip_axes=False, **kwargs): """ Convert XYZ tristimulus values to Y, dominant (complementary) wavelength and excitation purity. Args: :xyz: | ndarray with tristimulus values :xyzw: | None or ndarray with tristimulus values of a single (!) native white point, optional | None defaults to xyz of CIE D65 using the :cieobs: observer. :cieobs: | luxpy._CIEOBS, optional | CMF set to use when calculating spectrum locus coordinates. :flip_axes: | False, optional | If True: flip axis 0 and axis 1 in Ydelep to increase speed of loop in function. | (single xyzw with is not flipped!) Returns: :Ydlep: | ndarray with Y, dominant (complementary) wavelength | and excitation purity """ xyz3 = np3d(xyz).copy().astype(np.float) # flip axis so that shortest dim is on axis0 (save time in looping): if (xyz3.shape[0] < xyz3.shape[1]) & (flip_axes == True): axes12flipped = True xyz3 = xyz3.transpose((1, 0, 2)) else: axes12flipped = False # convert xyz to Yxy: Yxy = xyz_to_Yxy(xyz3) Yxyw = xyz_to_Yxy(xyzw) # get spectrum locus Y,x,y and wavelengths: SL = _CMF[cieobs]['bar'] SL = SL[:, SL[1:].sum(axis=0) > 0] # avoid div by zero in xyz-to-Yxy conversion wlsl = SL[0] Yxysl = xyz_to_Yxy(SL[1:4].T)[:, None] pmaxlambda = Yxysl[..., 1].argmax() maxlambda = wlsl[pmaxlambda] maxlambda = 700 print(np.where(wlsl == maxlambda)) pmaxlambda = np.where(wlsl == maxlambda)[0][0] Yxysl = Yxysl[:(pmaxlambda + 1), :] wlsl = wlsl[:(pmaxlambda + 1)] # center on xyzw: Yxy = Yxy - Yxyw Yxysl = Yxysl - Yxyw Yxyw = Yxyw - Yxyw #split: Y, x, y = asplit(Yxy) Yw, xw, yw = asplit(Yxyw) Ysl, xsl, ysl = asplit(Yxysl) # calculate hue: h = math.positive_arctan(x, y, htype='deg') print(h) print('rh', h[0, 0] - h[0, 1]) print(wlsl[0], wlsl[-1]) hsl = math.positive_arctan(xsl, ysl, htype='deg') hsl_max = hsl[0] # max hue angle at min wavelength hsl_min = hsl[-1] # min hue angle at max wavelength if hsl_min < hsl_max: hsl_min += 360 dominantwavelength = np.empty(Y.shape) purity = np.empty(Y.shape) print('xyz:', xyz) for i in range(xyz3.shape[1]): print('\ni:', i, h[:, i], hsl_max, hsl_min) print(h) # find index of complementary wavelengths/hues: pc = np.where( (h[:, i] > hsl_max) & (h[:, i] < hsl_min) ) # hue's requiring complementary wavelength (purple line) print('pc', (h[:, i] > hsl_max) & (h[:, i] < hsl_min)) h[:, i][pc] = h[:, i][pc] - np.sign( h[:, i][pc] - 180.0 ) * 180.0 # add/subtract 180° to get positive complementary wavelength # find 2 closest hues in sl: #hslb,hib = meshblock(hsl,h[:,i:i+1]) hib, hslb = np.meshgrid(h[:, i:i + 1], hsl) dh = np.abs(hslb - hib) q1 = dh.argmin(axis=0) # index of closest hue dh[q1] = 1000000.0 q2 = dh.argmin(axis=0) # index of second closest hue print('q1q2', q2, q1) print('wls:', h[:, i], wlsl[q1], wlsl[q2]) print('hsls:', hsl[q2, 0], hsl[q1, 0]) print('d', (wlsl[q2] - wlsl[q1]), (hsl[q2, 0] - hsl[q1, 0]), (wlsl[q2] - wlsl[q1]) / (hsl[q2, 0] - hsl[q1, 0])) print('(h[:,i] - hsl[q1,0])', (h[:, i] - hsl[q1, 0])) print('div', np.divide((wlsl[q2] - wlsl[q1]), (hsl[q2, 0] - hsl[q1, 0]))) print( 'mult(...)', np.multiply((h[:, i] - hsl[q1, 0]), np.divide((wlsl[q2] - wlsl[q1]), (hsl[q2, 0] - hsl[q1, 0])))) dominantwavelength[:, i] = wlsl[q1] + np.multiply( (h[:, i] - hsl[q1, 0]), np.divide((wlsl[q2] - wlsl[q1]), (hsl[q2, 0] - hsl[q1, 0])) ) # calculate wl corresponding to h: y = y1 + (x-x1)*(y2-y1)/(x2-x1) print('dom', dominantwavelength[:, i]) dominantwavelength[(dominantwavelength[:, i] > max(wlsl[q1], wlsl[q2])), i] = max(wlsl[q1], wlsl[q2]) dominantwavelength[(dominantwavelength[:, i] < min(wlsl[q1], wlsl[q2])), i] = min(wlsl[q1], wlsl[q2]) dominantwavelength[:, i][pc] = -dominantwavelength[:, i][ pc] #complementary wavelengths are specified by '-' sign # calculate excitation purity: x_dom_wl = xsl[q1, 0] + (xsl[q2, 0] - xsl[q1, 0]) * (h[:, i] - hsl[ q1, 0]) / (hsl[q2, 0] - hsl[q1, 0]) # calculate x of dom. wl y_dom_wl = ysl[q1, 0] + (ysl[q2, 0] - ysl[q1, 0]) * (h[:, i] - hsl[ q1, 0]) / (hsl[q2, 0] - hsl[q1, 0]) # calculate y of dom. wl d_wl = (x_dom_wl**2.0 + y_dom_wl**2.0)**0.5 # distance from white point to sl d = (x[:, i]**2.0 + y[:, i]**2.0)**0.5 # distance from white point to test point purity[:, i] = d / d_wl # correct for those test points that have a complementary wavelength # calculate intersection of line through white point and test point and purple line: xy = np.vstack((x[:, i], y[:, i])).T xyw = np.hstack((xw, yw)) xypl1 = np.hstack((xsl[0, None], ysl[0, None])) xypl2 = np.hstack((xsl[-1, None], ysl[-1, None])) da = (xy - xyw) db = (xypl2 - xypl1) dp = (xyw - xypl1) T = np.array([[0.0, -1.0], [1.0, 0.0]]) dap = np.dot(da, T) denom = np.sum(dap * db, axis=1, keepdims=True) num = np.sum(dap * dp, axis=1, keepdims=True) xy_linecross = (num / denom) * db + xypl1 d_linecross = np.atleast_2d( (xy_linecross[:, 0]**2.0 + xy_linecross[:, 1]**2.0)**0.5).T #[0] purity[:, i][pc] = d[pc] / d_linecross[pc][:, 0] Ydlep = np.dstack((xyz3[:, :, 1], dominantwavelength, purity)) if axes12flipped == True: Ydlep = Ydlep.transpose((1, 0, 2)) else: Ydlep = Ydlep.transpose((0, 1, 2)) return Ydlep.reshape(xyz.shape)
def Ydlep_to_xyz(Ydlep, cieobs=_CIEOBS, xyzw=_COLORTF_DEFAULT_WHITE_POINT, flip_axes=False, SL_max_lambda=None, **kwargs): """ Convert Y, dominant (complementary) wavelength and excitation purity to XYZ tristimulus values. Args: :Ydlep: | ndarray with Y, dominant (complementary) wavelength and excitation purity :xyzw: | None or narray with tristimulus values of a single (!) native white point, optional | None defaults to xyz of CIE D65 using the :cieobs: observer. :cieobs: | luxpy._CIEOBS, optional | CMF set to use when calculating spectrum locus coordinates. :flip_axes: | False, optional | If True: flip axis 0 and axis 1 in Ydelep to increase speed of loop in function. | (single xyzw with is not flipped!) :SL_max_lambda: | None or float, optional | Maximum wavelength of spectrum locus before it turns back on itelf in the high wavelength range (~700 nm) Returns: :xyz: | ndarray with tristimulus values """ Ydlep3 = np3d(Ydlep).copy().astype(np.float) # flip axis so that longest dim is on first axis (save time in looping): if (Ydlep3.shape[0] < Ydlep3.shape[1]) & (flip_axes == True): axes12flipped = True Ydlep3 = Ydlep3.transpose((1, 0, 2)) else: axes12flipped = False # convert xyzw to Yxyw: Yxyw = xyz_to_Yxy(xyzw) Yxywo = Yxyw.copy() # get spectrum locus Y,x,y and wavelengths: SL = _CMF[cieobs]['bar'] SL = SL[:, SL[1:].sum(axis=0) > 0] # avoid div by zero in xyz-to-Yxy conversion wlsl = SL[0, None].T Yxysl = xyz_to_Yxy(SL[1:4].T)[:, None] # Get maximum wavelength of spectrum locus (before it turns back on itself) if SL_max_lambda is None: pmaxlambda = Yxysl[..., 1].argmax() # lambda with largest x value dwl = np.diff( Yxysl[:, 0, 1]) # spectrumlocus in that range should have increasing x dwl[wlsl[:-1, 0] < 600] = 10000 pmaxlambda = np.where( dwl <= 0)[0][0] # Take first element with zero or <zero slope else: pmaxlambda = np.abs(wlsl - SL_max_lambda).argmin() Yxysl = Yxysl[:(pmaxlambda + 1), :] wlsl = wlsl[:(pmaxlambda + 1), :1] # center on xyzw: Yxysl = Yxysl - Yxyw Yxyw = Yxyw - Yxyw #split: Y, dom, pur = asplit(Ydlep3) Yw, xw, yw = asplit(Yxyw) Ywo, xwo, ywo = asplit(Yxywo) Ysl, xsl, ysl = asplit(Yxysl) # loop over longest dim: x = np.empty(Y.shape) y = np.empty(Y.shape) for i in range(Ydlep3.shape[1]): # find closest wl's to dom: #wlslb,wlib = meshblock(wlsl,np.abs(dom[i,:])) #abs because dom<0--> complemtary wl wlib, wlslb = np.meshgrid(np.abs(dom[:, i]), wlsl) dwl = wlslb - wlib q1 = np.abs(dwl).argmin(axis=0) # index of closest wl sign_q1 = np.sign(dwl[q1]) dwl[np.sign(dwl) == sign_q1] = 1000000 # set all dwl on the same side as q1 to a very large value q2 = np.abs(dwl).argmin( axis=0) # index of second closest (enclosing) wl # calculate x,y of dom: x_dom_wl = xsl[q1, 0] + (xsl[q2, 0] - xsl[q1, 0]) * ( np.abs(dom[:, i]) - wlsl[q1, 0]) / (wlsl[q2, 0] - wlsl[q1, 0] ) # calculate x of dom. wl y_dom_wl = ysl[q1, 0] + (ysl[q2, 0] - ysl[q1, 0]) * ( np.abs(dom[:, i]) - wlsl[q1, 0]) / (wlsl[q2, 0] - wlsl[q1, 0] ) # calculate y of dom. wl # calculate x,y of test: d_wl = (x_dom_wl**2.0 + y_dom_wl**2.0)**0.5 # distance from white point to dom d = pur[:, i] * d_wl hdom = math.positive_arctan(x_dom_wl, y_dom_wl, htype='deg') x[:, i] = d * np.cos(hdom * np.pi / 180.0) y[:, i] = d * np.sin(hdom * np.pi / 180.0) # complementary: pc = np.where(dom[:, i] < 0.0) hdom[pc] = hdom[pc] - np.sign(dom[:, i][pc] - 180.0) * 180.0 # get positive hue angle # calculate intersection of line through white point and test point and purple line: xy = np.vstack((x_dom_wl, y_dom_wl)).T xyw = np.vstack((xw, yw)).T xypl1 = np.vstack((xsl[0, None], ysl[0, None])).T xypl2 = np.vstack((xsl[-1, None], ysl[-1, None])).T da = (xy - xyw) db = (xypl2 - xypl1) dp = (xyw - xypl1) T = np.array([[0.0, -1.0], [1.0, 0.0]]) dap = np.dot(da, T) denom = np.sum(dap * db, axis=1, keepdims=True) num = np.sum(dap * dp, axis=1, keepdims=True) xy_linecross = (num / denom) * db + xypl1 d_linecross = np.atleast_2d( (xy_linecross[:, 0]**2.0 + xy_linecross[:, 1]**2.0)**0.5).T[:, 0] x[:, i][pc] = pur[:, i][pc] * d_linecross[pc] * np.cos( hdom[pc] * np.pi / 180) y[:, i][pc] = pur[:, i][pc] * d_linecross[pc] * np.sin( hdom[pc] * np.pi / 180) Yxy = np.dstack((Ydlep3[:, :, 0], x + xwo, y + ywo)) if axes12flipped == True: Yxy = Yxy.transpose((1, 0, 2)) else: Yxy = Yxy.transpose((0, 1, 2)) return Yxy_to_xyz(Yxy).reshape(Ydlep.shape)
def cam15u(data, fov=10.0, inputtype='xyz', direction='forward', outin='Q,aW,bW', parameters=None): """ Convert between CIE 2006 10° XYZ tristimulus values (or spectral data) and CAM15u color appearance correlates. Args: :data: | ndarray of CIE 2006 10° XYZ tristimulus values or spectral data | or color appearance attributes :fov: | 10.0, optional | Field-of-view of stimulus (for size effect on brightness) :inputtpe: | 'xyz' or 'spd', optional | Specifies the type of input: | tristimulus values or spectral data for the forward mode. :direction: | 'forward' or 'inverse', optional | -'forward': xyz -> cam15u | -'inverse': cam15u -> xyz :outin: | 'Q,aW,bW' or str, optional | 'Q,aW,bW' (brightness and opponent signals for amount-of-neutral) | other options: 'Q,aM,bM' (colorfulness) and 'Q,aS,bS' (saturation) | Str specifying the type of | input (:direction: == 'inverse') and | output (:direction: == 'forward') :parameters: | None or dict, optional | Set of model parameters. | - None: defaults to luxpy.cam._CAM15U_PARAMETERS | (see references below) Returns: :returns: | ndarray with color appearance correlates (:direction: == 'forward') | or | XYZ tristimulus values (:direction: == 'inverse') References: 1. `M. Withouck, K. A. G. Smet, W. R. Ryckaert, and P. Hanselaer, “Experimental driven modelling of the color appearance of unrelated self-luminous stimuli: CAM15u,” Opt. Express, vol. 23, no. 9, pp. 12045–12064, 2015. <https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-9-12045&origin=search>`_ 2. `M. Withouck, K. A. G. Smet, and P. Hanselaer, (2015), “Brightness prediction of different sized unrelated self-luminous stimuli,” Opt. Express, vol. 23, no. 10, pp. 13455–13466. <https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-10-13455&origin=search>`_ """ if parameters is None: parameters = _CAM15U_PARAMETERS outin = outin.split(',') #unpack model parameters: Mxyz2rgb, cA, cAlms, cHK, cM, cW, ca, calms, cb, cblms, cfov, cp, k, unique_hue_data = [ parameters[x] for x in sorted(parameters.keys()) ] # precomputations: invMxyz2rgb = np.linalg.inv(Mxyz2rgb) MAab = np.array([cAlms, calms, cblms]) invMAab = np.linalg.inv(MAab) #initialize data and camout: data = np2d(data) if len(data.shape) == 2: data = np.expand_dims(data, axis=0) # avoid looping if not necessary if (data.shape[0] > data.shape[1]): # loop over shortest dim. flipaxis0and1 = True data = np.transpose(data, axes=(1, 0, 2)) else: flipaxis0and1 = False dshape = list(data.shape) dshape[-1] = len(outin) # requested number of correlates if (inputtype != 'xyz') & (direction == 'forward'): dshape[-2] = dshape[ -2] - 1 # wavelength row doesn't count & only with forward can the input data be spectral camout = np.zeros(dshape) camout.fill(np.nan) for i in range(data.shape[0]): if (inputtype != 'xyz') & (direction == 'forward'): xyz = spd_to_xyz(data[i], cieobs='2006_10', relative=False) lms = np.dot(_CMF['2006_10']['M'], xyz.T).T # convert to l,m,s rgb = (lms / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta elif (inputtype == 'xyz') & (direction == 'forward'): rgb = np.dot(Mxyz2rgb, data[i].T).T if direction == 'forward': # apply cube-root compression: rgbc = rgb**(cp) # calculate achromatic and color difference signals, A, a, b: Aab = np.dot(MAab, rgbc.T).T A, a, b = asplit(Aab) A = cA * A a = ca * a b = cb * b # calculate colorfullness like signal M: M = cM * ((a**2.0 + b**2.0)**0.5) # calculate brightness Q: Q = A + cHK[0] * M**cHK[ 1] # last term is contribution of Helmholtz-Kohlrausch effect on brightness # calculate saturation, s: s = M / Q # calculate amount of white, W: W = 100.0 / (1.0 + cW[0] * (s**cW[1])) # adjust Q for size (fov) of stimulus (matter of debate whether to do this before or after calculation of s or W, there was no data on s, M or W for different sized stimuli: after) Q = Q * (fov / 10.0)**cfov # calculate hue, h and Hue quadrature, H: h = hue_angle(a, b, htype='deg') if 'H' in outin: H = hue_quadrature(h, unique_hue_data=unique_hue_data) else: H = None # calculate cart. co.: if 'aM' in outin: aM = M * np.cos(h * np.pi / 180.0) bM = M * np.sin(h * np.pi / 180.0) if 'aS' in outin: aS = s * np.cos(h * np.pi / 180.0) bS = s * np.sin(h * np.pi / 180.0) if 'aW' in outin: aW = W * np.cos(h * np.pi / 180.0) bW = W * np.sin(h * np.pi / 180.0) if (outin != ['Q', 'aW', 'bW']): camout[i] = eval('ajoin((' + ','.join(outin) + '))') else: camout[i] = ajoin((Q, aW, bW)) elif direction == 'inverse': # get Q, M and a, b depending on input type: if 'aW' in outin: Q, a, b = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref W = (a**2.0 + b**2.0)**0.5 s = (((100 / W) - 1.0) / cW[0])**(1.0 / cW[1]) M = s * Q if 'aM' in outin: Q, a, b = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref M = (a**2.0 + b**2.0)**0.5 if 'aS' in outin: Q, a, b = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref s = (a**2.0 + b**2.0)**0.5 M = s * Q if 'h' in outin: Q, WsM, h = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref if 'W' in outin: s = (((100.0 / WsM) - 1.0) / cW[0])**(1.0 / cW[1]) M = s * Q elif 's' in outin: M = WsM * Q elif 'M' in outin: M = WsM # calculate achromatic signal, A from Q and M: A = Q - cHK[0] * M**cHK[1] A = A / cA # calculate hue angle: h = hue_angle(a, b, htype='rad') # calculate a,b from M and h: a = (M / cM) * np.cos(h) b = (M / cM) * np.sin(h) a = a / ca b = b / cb # create Aab: Aab = ajoin((A, a, b)) # calculate rgbc: rgbc = np.dot(invMAab, Aab.T).T # decompress rgbc to rgb: rgb = rgbc**(1 / cp) # convert rgb to xyz: xyz = np.dot(invMxyz2rgb, rgb.T).T camout[i] = xyz if flipaxis0and1 == True: # loop over shortest dim. camout = np.transpose(camout, axes=(1, 0, 2)) if camout.shape[0] == 1: camout = np.squeeze(camout, axis=0) return camout
def cam_sww16(data, dataw = None, Yb = 20.0, Lw = 400.0, Ccwb = None, relative = True, \ parameters = None, inputtype = 'xyz', direction = 'forward', \ cieobs = '2006_10'): """ A simple principled color appearance model based on a mapping of the Munsell color system. | This function implements the JOSA A (parameters = 'JOSA') published model. Args: :data: | ndarray with input tristimulus values | or spectral data | or input color appearance correlates | Can be of shape: (N [, xM], x 3), whereby: | N refers to samples and M refers to light sources. | Note that for spectral input shape is (N x (M+1) x wl) :dataw: | None or ndarray, optional | Input tristimulus values or spectral data of white point. | None defaults to the use of CIE illuminant C. :Yb: | 20.0, optional | Luminance factor of background (perfect white diffuser, Yw = 100) :Lw: | 400.0, optional | Luminance (cd/m²) of white point. :Ccwb: | None, optional | Degree of cognitive adaptation (white point balancing) | If None: use [..,..] from parameters dict. :relative: | True or False, optional | True: xyz tristimulus values are relative (Yw = 100) :parameters: | None or str or dict, optional | Dict with model parameters. | - None: defaults to luxpy.cam._CAM_SWW_2016_PARAMETERS['JOSA'] | - str: 'best-fit-JOSA' or 'best-fit-all-Munsell' | - dict: user defined model parameters | (dict should have same structure) :inputtype: | 'xyz' or 'spd', optional | Specifies the type of input: | tristimulus values or spectral data for the forward mode. :direction: | 'forward' or 'inverse', optional | -'forward': xyz -> cam_sww_2016 | -'inverse': cam_sww_2016 -> xyz :cieobs: | '2006_10', optional | CMF set to use to perform calculations where spectral data is involved (inputtype == 'spd'; dataw = None) | Other options: see luxpy._CMF['types'] Returns: :returns: | ndarray with color appearance correlates (:direction: == 'forward') | or | XYZ tristimulus values (:direction: == 'inverse') Notes: | This function implements the JOSA A (parameters = 'JOSA') published model. | With: | 1. A correction for the parameter | in Eq.4 of Fig. 11: 0.952 --> -0.952 | | 2. The delta_ac and delta_bc white-balance shifts in Eq. 5e & 5f | should be: -0.028 & 0.821 | | (cfr. Ccwb = 0.66 in: | ab_test_out = ab_test_int - Ccwb*ab_gray_adaptation_field_int)) References: 1. `Smet, K. A. G., Webster, M. A., & Whitehead, L. A. (2016). A simple principled approach for modeling and understanding uniform color metrics. Journal of the Optical Society of America A, 33(3), A319–A331. <https://doi.org/10.1364/JOSAA.33.00A319>`_ """ # get model parameters args = locals().copy() if parameters is None: parameters = _CAM_SWW16_PARAMETERS['JOSA'] if isinstance(parameters, str): parameters = _CAM_SWW16_PARAMETERS[parameters] parameters = put_args_in_db( parameters, args) #overwrite parameters with other (not-None) args input #unpack model parameters: Cc, Ccwb, Cf, Mxyz2lms, cLMS, cab_int, cab_out, calpha, cbeta, cga1, cga2, cgb1, cgb2, cl_int, clambda, lms0 = [ parameters[x] for x in sorted(parameters.keys()) ] # setup default adaptation field: if (dataw is None): dataw = _CIE_ILLUMINANTS['C'].copy() # get illuminant C xyzw = spd_to_xyz(dataw, cieobs=cieobs, relative=False) # get abs. tristimulus values if relative == False: #input is expected to be absolute dataw[1:] = Lw * dataw[ 1:] / xyzw[:, 1:2] #dataw = Lw*dataw # make absolute else: dataw = dataw # make relative (Y=100) if inputtype == 'xyz': dataw = spd_to_xyz(dataw, cieobs=cieobs, relative=relative) # precomputations: Mxyz2lms = np.dot( np.diag(cLMS), math.normalize_3x3_matrix(Mxyz2lms, np.array([[1, 1, 1]])) ) # normalize matrix for xyz-> lms conversion to ill. E weighted with cLMS invMxyz2lms = np.linalg.inv(Mxyz2lms) MAab = np.array([clambda, calpha, cbeta]) invMAab = np.linalg.inv(MAab) #initialize data and camout: data = np2d(data).copy( ) # stimulus data (can be upto NxMx3 for xyz, or [N x (M+1) x wl] for spd)) dataw = np2d(dataw).copy( ) # white point (can be upto Nx3 for xyz, or [(N+1) x wl] for spd) # make axis 1 of dataw have 'same' dimensions as data: if (data.ndim == 2): data = np.expand_dims(data, axis=1) # add light source axis 1 if inputtype == 'xyz': if dataw.shape[ 0] == 1: #make dataw have same lights source dimension size as data dataw = np.repeat(dataw, data.shape[1], axis=0) else: if dataw.shape[0] == 2: dataw = np.vstack( (dataw[0], np.repeat(dataw[1:], data.shape[1], axis=0))) # Flip light source dim to axis 0: data = np.transpose(data, axes=(1, 0, 2)) # Initialize output array: dshape = list(data.shape) dshape[-1] = 3 # requested number of correlates: l_int, a_int, b_int if (inputtype != 'xyz') & (direction == 'forward'): dshape[-2] = dshape[ -2] - 1 # wavelength row doesn't count & only with forward can the input data be spectral camout = np.zeros(dshape) camout.fill(np.nan) # apply forward/inverse model for each row in data: for i in range(data.shape[0]): # stage 1: calculate photon rates of stimulus and adapting field, lmst & lmsf: if (inputtype != 'xyz'): if relative == True: xyzw_abs = spd_to_xyz(np.vstack((dataw[0], dataw[i + 1])), cieobs=cieobs, relative=False) dataw[i + 1] = Lw * dataw[i + 1] / xyzw_abs[0, 1] # make absolute xyzw = spd_to_xyz(np.vstack((dataw[0], dataw[i + 1])), cieobs=cieobs, relative=False) lmsw = 683.0 * np.dot(Mxyz2lms, xyzw.T).T / _CMF[cieobs]['K'] lmsf = (Yb / 100.0 ) * lmsw # calculate adaptation field and convert to l,m,s if (direction == 'forward'): if relative == True: data[i, 1:, :] = Lw * data[i, 1:, :] / xyzw_abs[ 0, 1] # make absolute xyzt = spd_to_xyz(data[i], cieobs=cieobs, relative=False) / _CMF[cieobs]['K'] lmst = 683.0 * np.dot(Mxyz2lms, xyzt.T).T # convert to l,m,s else: lmst = lmsf # put lmsf in lmst for inverse-mode elif (inputtype == 'xyz'): if relative == True: dataw[i] = Lw * dataw[i] / 100.0 # make absolute lmsw = 683.0 * np.dot( Mxyz2lms, dataw[i].T).T / _CMF[cieobs]['K'] # convert to lms lmsf = (Yb / 100.0) * lmsw if (direction == 'forward'): if relative == True: data[i] = Lw * data[i] / 100.0 # make absolute lmst = 683.0 * np.dot( Mxyz2lms, data[i].T).T / _CMF[cieobs]['K'] # convert to lms else: lmst = lmsf # put lmsf in lmst for inverse-mode # stage 2: calculate cone outputs of stimulus lmstp lmstp = math.erf(Cc * (np.log(lmst / lms0) + Cf * np.log(lmsf / lms0))) lmsfp = math.erf(Cc * (np.log(lmsf / lms0) + Cf * np.log(lmsf / lms0))) lmstp = np.vstack( (lmsfp, lmstp) ) # add adaptation field lms temporarily to lmsp for quick calculation # stage 3: calculate optic nerve signals, lam*, alphp, betp: lstar, alph, bet = asplit(np.dot(MAab, lmstp.T).T) alphp = cga1[0] * alph alphp[alph < 0] = cga1[1] * alph[alph < 0] betp = cgb1[0] * bet betp[bet < 0] = cgb1[1] * bet[bet < 0] # stage 4: calculate recoded nerve signals, alphapp, betapp: alphpp = cga2[0] * (alphp + betp) betpp = cgb2[0] * (alphp - betp) # stage 5: calculate conscious color perception: lstar_int = cl_int[0] * (lstar + cl_int[1]) alph_int = cab_int[0] * (np.cos(cab_int[1] * np.pi / 180.0) * alphpp - np.sin(cab_int[1] * np.pi / 180.0) * betpp) bet_int = cab_int[0] * (np.sin(cab_int[1] * np.pi / 180.0) * alphpp + np.cos(cab_int[1] * np.pi / 180.0) * betpp) lstar_out = lstar_int if direction == 'forward': if Ccwb is None: alph_out = alph_int - cab_out[0] bet_out = bet_int - cab_out[1] else: Ccwb = Ccwb * np.ones((2)) Ccwb[Ccwb < 0.0] = 0.0 Ccwb[Ccwb > 1.0] = 1.0 alph_out = alph_int - Ccwb[0] * alph_int[ 0] # white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation bet_out = bet_int - Ccwb[1] * bet_int[0] camout[i] = np.vstack( (lstar_out[1:], alph_out[1:], bet_out[1:]) ).T # stack together and remove adaptation field from vertical stack elif direction == 'inverse': labf_int = np.hstack((lstar_int[0], alph_int[0], bet_int[0])) # get lstar_out, alph_out & bet_out for data: lstar_out, alph_out, bet_out = asplit(data[i]) # stage 5 inverse: # undo cortical white-balance: if Ccwb is None: alph_int = alph_out + cab_out[0] bet_int = bet_out + cab_out[1] else: Ccwb = Ccwb * np.ones((2)) Ccwb[Ccwb < 0.0] = 0.0 Ccwb[Ccwb > 1.0] = 1.0 alph_int = alph_out + Ccwb[0] * alph_int[ 0] # inverse white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation bet_int = bet_out + Ccwb[1] * bet_int[0] lstar_int = lstar_out alphpp = (1.0 / cab_int[0]) * ( np.cos(-cab_int[1] * np.pi / 180.0) * alph_int - np.sin(-cab_int[1] * np.pi / 180.0) * bet_int) betpp = (1.0 / cab_int[0]) * ( np.sin(-cab_int[1] * np.pi / 180.0) * alph_int + np.cos(-cab_int[1] * np.pi / 180.0) * bet_int) lstar_int = lstar_out lstar = (lstar_int / cl_int[0]) - cl_int[1] # stage 4 inverse: alphp = 0.5 * (alphpp / cga2[0] + betpp / cgb2[0] ) # <-- alphpp = (Cga2.*(alphp+betp)); betp = 0.5 * (alphpp / cga2[0] - betpp / cgb2[0] ) # <-- betpp = (Cgb2.*(alphp-betp)); # stage 3 invers: alph = alphp / cga1[0] bet = betp / cgb1[0] sa = np.sign(cga1[1]) sb = np.sign(cgb1[1]) alph[(sa * alphp) < 0.0] = alphp[(sa * alphp) < 0] / cga1[1] bet[(sb * betp) < 0.0] = betp[(sb * betp) < 0] / cgb1[1] lab = ajoin((lstar, alph, bet)) # stage 2 inverse: lmstp = np.dot(invMAab, lab.T).T lmstp[lmstp < -1.0] = -1.0 lmstp[lmstp > 1.0] = 1.0 lmstp = math.erfinv(lmstp) / Cc - Cf * np.log(lmsf / lms0) lmst = np.exp(lmstp) * lms0 # stage 1 inverse: xyzt = np.dot(invMxyz2lms, lmst.T).T if relative == True: xyzt = (100.0 / Lw) * xyzt camout[i] = xyzt # if flipaxis0and1 == True: # loop over shortest dim. # camout = np.transpose(camout, axes = (1,0,2)) # Flip light source dim back to axis 1: camout = np.transpose(camout, axes=(1, 0, 2)) if camout.shape[0] == 1: camout = np.squeeze(camout, axis=0) return camout
def cam_sww16(data, dataw=None, Yb=20.0, Lw=400.0, Ccwb=None, relative=True, inputtype='xyz', direction='forward', parameters=None, cieobs='2006_10', match_to_conversionmatrix_to_cieobs=True): """ A simple principled color appearance model based on a mapping of the Munsell color system. | This function implements the JOSA A (parameters = 'JOSA') published model. Args: :data: | ndarray with input tristimulus values | or spectral data | or input color appearance correlates | Can be of shape: (N [, xM], x 3), whereby: | N refers to samples and M refers to light sources. | Note that for spectral input shape is (N x (M+1) x wl) :dataw: | None or ndarray, optional | Input tristimulus values or spectral data of white point. | None defaults to the use of CIE illuminant C. :Yb: | 20.0, optional | Luminance factor of background (perfect white diffuser, Yw = 100) :Lw: | 400.0, optional | Luminance (cd/m²) of white point. :Ccwb: | None, optional | Degree of cognitive adaptation (white point balancing) | If None: use [..,..] from parameters dict. :relative: | True or False, optional | True: xyz tristimulus values are relative (Yw = 100) :parameters: | None or str or dict, optional | Dict with model parameters. | - None: defaults to luxpy.cam._CAM_SWW_2016_PARAMETERS['JOSA'] | - str: 'best-fit-JOSA' or 'best-fit-all-Munsell' | - dict: user defined model parameters | (dict should have same structure) :inputtype: | 'xyz' or 'spd', optional | Specifies the type of input: | tristimulus values or spectral data for the forward mode. :direction: | 'forward' or 'inverse', optional | -'forward': xyz -> cam_sww_2016 | -'inverse': cam_sww_2016 -> xyz :cieobs: | '2006_10', optional | CMF set to use to perform calculations where spectral data | is involved (inputtype == 'spd'; dataw = None) | Other options: see luxpy._CMF['types'] :match_to_conversionmatrix_to_cieobs: | When channging to a different CIE observer, change the xyz-to_lms | matrix to the one corresponding to that observer. If False: use | the one set in parameters or _CAM_SWW16_PARAMETERS Returns: :returns: | ndarray with color appearance correlates (:direction: == 'forward') | or | XYZ tristimulus values (:direction: == 'inverse') Notes: | This function implements the JOSA A (parameters = 'JOSA') | published model. | With: | 1. A correction for the parameter | in Eq.4 of Fig. 11: 0.952 --> -0.952 | | 2. The delta_ac and delta_bc white-balance shifts in Eq. 5e & 5f | should be: -0.028 & 0.821 | | (cfr. Ccwb = 0.66 in: | ab_test_out = ab_test_int - Ccwb*ab_gray_adaptation_field_int)) References: 1. `Smet, K. A. G., Webster, M. A., & Whitehead, L. A. (2016). A simple principled approach for modeling and understanding uniform color metrics. Journal of the Optical Society of America A, 33(3), A319–A331. <https://doi.org/10.1364/JOSAA.33.00A319>`_ """ #-------------------------------------------------------------------------- # Get model parameters: #-------------------------------------------------------------------------- args = locals().copy() parameters = _update_parameter_dict( args, parameters=parameters, match_to_conversionmatrix_to_cieobs=match_to_conversionmatrix_to_cieobs ) #unpack model parameters: Cc, Ccwb, Cf, Mxyz2lms, cLMS, cab_int, cab_out, calpha, cbeta, cga1, cga2, cgb1, cgb2, cl_int, clambda, lms0 = [ parameters[x] for x in sorted(parameters.keys()) ] #-------------------------------------------------------------------------- # Setup default adaptation field: #-------------------------------------------------------------------------- dataw = _setup_default_adaptation_field(dataw=dataw, Lw=Lw, inputtype=inputtype, relative=relative, cieobs=cieobs) #-------------------------------------------------------------------------- # Redimension input data to ensure most appropriate sizes # for easy and efficient looping and initialize output array: #-------------------------------------------------------------------------- data, dataw, camout, originalshape = _massage_input_and_init_output( data, dataw, inputtype=inputtype, direction=direction) #-------------------------------------------------------------------------- # Do precomputations needed for both the forward and inverse model, # and which do not depend on sample or light source data: #-------------------------------------------------------------------------- Mxyz2lms = np.dot( np.diag(cLMS), Mxyz2lms ) # weight the xyz-to-lms conversion matrix with cLMS (cfr. stage 1 calculations) invMxyz2lms = np.linalg.inv( Mxyz2lms) # Calculate the inverse lms-to-xyz conversion matrix MAab = np.array( [clambda, calpha, cbeta] ) # Create matrix with scale factors for L, M, S for quick matrix multiplications invMAab = np.linalg.inv( MAab) # Pre-calculate its inverse to avoid repeat in loop. #-------------------------------------------------------------------------- # Apply forward/inverse model by looping over each row (=light source dim.) # in data: #-------------------------------------------------------------------------- N = data.shape[0] for i in range(N): #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # START FORWARD MODE and common part of inverse mode #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ #----------------------------------------------------------------------------- # Get absolute tristimulus values for stimulus field and white point for row i: #----------------------------------------------------------------------------- xyzt, xyzw, xyzw_abs = _get_absolute_xyz_xyzw(data, dataw, i=i, Lw=Lw, direction=direction, cieobs=cieobs, inputtype=inputtype, relative=relative) #----------------------------------------------------------------------------- # stage 1: calculate photon rates of stimulus and white white, and # adapting field: i.e. lmst, lmsw and lmsf #----------------------------------------------------------------------------- # Convert to white point l,m,s: lmsw = 683.0 * np.dot(Mxyz2lms, xyzw.T).T / _CMF[cieobs]['K'] # Calculate adaptation field and convert to l,m,s: lmsf = (Yb / 100.0) * lmsw # Calculate lms of stimulus # or put adaptation lmsf in test field lmst for later use in inverse-mode (no xyz in 'inverse' mode!!!): lmst = (683.0 * np.dot(Mxyz2lms, xyzt.T).T / _CMF[cieobs]['K']) if (direction == 'forward') else lmsf #----------------------------------------------------------------------------- # stage 2: calculate cone outputs of stimulus lmstp #----------------------------------------------------------------------------- lmstp = math.erf(Cc * (np.log(lmst / lms0) + Cf * np.log(lmsf / lms0))) # stimulus test field lmsfp = math.erf(Cc * (np.log(lmsf / lms0) + Cf * np.log(lmsf / lms0))) # adaptation field # add adaptation field lms temporarily to lmstp for quick calculation lmstp = np.vstack((lmsfp, lmstp)) #----------------------------------------------------------------------------- # stage 3: calculate optic nerve signals, lam*, alphp, betp: #----------------------------------------------------------------------------- lstar, alph, bet = asplit(np.dot(MAab, lmstp.T).T) alphp = cga1[0] * alph alphp[alph < 0] = cga1[1] * alph[alph < 0] betp = cgb1[0] * bet betp[bet < 0] = cgb1[1] * bet[bet < 0] #----------------------------------------------------------------------------- # stage 4: calculate recoded nerve signals, alphapp, betapp: #----------------------------------------------------------------------------- alphpp = cga2[0] * (alphp + betp) betpp = cgb2[0] * (alphp - betp) #----------------------------------------------------------------------------- # stage 5: calculate conscious color perception: #----------------------------------------------------------------------------- lstar_int = cl_int[0] * (lstar + cl_int[1]) alph_int = cab_int[0] * (np.cos(cab_int[1] * np.pi / 180.0) * alphpp - np.sin(cab_int[1] * np.pi / 180.0) * betpp) bet_int = cab_int[0] * (np.sin(cab_int[1] * np.pi / 180.0) * alphpp + np.cos(cab_int[1] * np.pi / 180.0) * betpp) lstar_out = lstar_int #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # stage 5 continued but SPLIT IN FORWARD AND INVERSE MODES: #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ #-------------------------------------- # FORWARD MODE TO PERCEPTUAL SIGNALS: #-------------------------------------- if direction == 'forward': if Ccwb is None: alph_out = alph_int - cab_out[0] bet_out = bet_int - cab_out[1] else: Ccwb = Ccwb * np.ones((2)) Ccwb[Ccwb < 0.0] = 0.0 Ccwb[Ccwb > 1.0] = 1.0 # white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation: alph_out = alph_int - Ccwb[0] * alph_int[0] bet_out = bet_int - Ccwb[1] * bet_int[0] # stack together and remove adaptation field from vertical stack # camout is an ndarray with perceptual signals: camout[i] = np.vstack((lstar_out[1:], alph_out[1:], bet_out[1:])).T #-------------------------------------- # INVERSE MODE FROM PERCEPTUAL SIGNALS: #-------------------------------------- elif direction == 'inverse': # stack cognitive pre-adapted adaptation field signals (first on stack) together: #labf_int = np.hstack((lstar_int[0],alph_int[0],bet_int[0])) # get lstar_out, alph_out & bet_out for data #(contains model perceptual signals in inverse mode!!!): lstar_out, alph_out, bet_out = asplit(data[i]) #------------------------------------------------------------------------ # Inverse stage 5: undo cortical white-balance: #------------------------------------------------------------------------ if Ccwb is None: alph_int = alph_out + cab_out[0] bet_int = bet_out + cab_out[1] else: Ccwb = Ccwb * np.ones((2)) Ccwb[Ccwb < 0.0] = 0.0 Ccwb[Ccwb > 1.0] = 1.0 # inverse white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation alph_int = alph_out + Ccwb[0] * alph_int[0] bet_int = bet_out + Ccwb[1] * bet_int[0] alphpp = (1.0 / cab_int[0]) * ( np.cos(-cab_int[1] * np.pi / 180.0) * alph_int - np.sin(-cab_int[1] * np.pi / 180.0) * bet_int) betpp = (1.0 / cab_int[0]) * ( np.sin(-cab_int[1] * np.pi / 180.0) * alph_int + np.cos(-cab_int[1] * np.pi / 180.0) * bet_int) lstar_int = lstar_out lstar = (lstar_int / cl_int[0]) - cl_int[1] #--------------------------------------------------------------------------- # Inverse stage 4: pre-adapted perceptual signals to recoded nerve signals: #--------------------------------------------------------------------------- alphp = 0.5 * (alphpp / cga2[0] + betpp / cgb2[0] ) # <-- alphpp = (Cga2.*(alphp+betp)); betp = 0.5 * (alphpp / cga2[0] - betpp / cgb2[0] ) # <-- betpp = (Cgb2.*(alphp-betp)); #--------------------------------------------------------------------------- # Inverse stage 3: recoded nerve signals to optic nerve signals: #--------------------------------------------------------------------------- alph = alphp / cga1[0] bet = betp / cgb1[0] sa = np.sign(cga1[1]) sb = np.sign(cgb1[1]) alph[(sa * alphp) < 0.0] = alphp[(sa * alphp) < 0] / cga1[1] bet[(sb * betp) < 0.0] = betp[(sb * betp) < 0] / cgb1[1] lab = ajoin((lstar, alph, bet)) #--------------------------------------------------------------------------- # Inverse stage 2: optic nerve signals to cone outputs: #--------------------------------------------------------------------------- lmstp = np.dot(invMAab, lab.T).T lmstp[lmstp < -1.0] = -1.0 lmstp[lmstp > 1.0] = 1.0 #--------------------------------------------------------------------------- # Inverse stage 1: cone outputs to photon rates: #--------------------------------------------------------------------------- lmstp = math.erfinv(lmstp) / Cc - Cf * np.log(lmsf / lms0) lmst = np.exp(lmstp) * lms0 #--------------------------------------------------------------------------- # Photon rates to absolute or relative tristimulus values: #--------------------------------------------------------------------------- xyzt = np.dot(invMxyz2lms, lmst.T).T * (_CMF[cieobs]['K'] / 683.0) if relative == True: xyzt = (100 / Lw) * xyzt # store in same named variable as forward mode: camout[i] = xyzt #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # END inverse mode #++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ return _massage_output_data_to_original_shape(camout, originalshape)
def cam18sl(data, datab=None, Lb=[100], fov=10.0, inputtype='xyz', direction='forward', outin='Q,aS,bS', parameters=None): """ Convert between CIE 2006 10° XYZ tristimulus values (or spectral data) and CAM18sl color appearance correlates. Args: :data: | ndarray of CIE 2006 10° absolute XYZ tristimulus values or spectral data | or color appearance attributes of stimulus :datab: | ndarray of CIE 2006 10° absolute XYZ tristimulus values or spectral data | of stimulus background :Lb: | [100], optional | Luminance (cd/m²) value(s) of background(s) calculated using the CIE 2006 10° CMFs | (only used in case datab == None and the background is assumed to be an Equal-Energy-White) :fov: | 10.0, optional | Field-of-view of stimulus (for size effect on brightness) :inputtpe: | 'xyz' or 'spd', optional | Specifies the type of input: | tristimulus values or spectral data for the forward mode. :direction: | 'forward' or 'inverse', optional | -'forward': xyz -> cam18sl | -'inverse': cam18sl -> xyz :outin: | 'Q,aS,bS' or str, optional | 'Q,aS,bS' (brightness and opponent signals for saturation) | other options: 'Q,aM,bM' (colorfulness) | (Note that 'Q,aW,bW' would lead to a Cartesian | a,b-coordinate system centered at (1,0)) | Str specifying the type of | input (:direction: == 'inverse') and | output (:direction: == 'forward') :parameters: | None or dict, optional | Set of model parameters. | - None: defaults to luxpy.cam._CAM18SL_PARAMETERS | (see references below) Returns: :returns: | ndarray with color appearance correlates (:direction: == 'forward') | or | XYZ tristimulus values (:direction: == 'inverse') Notes: | * Instead of using the CIE 1964 10° CMFs in some places of the model, | the CIE 2006 10° CMFs are used througout, making it more self_consistent. | This has an effect on the k scaling factors (now different those in CAM15u) | and the illuminant E normalization for use in the chromatic adaptation transform. | (see future erratum to Hermans et al., 2018) | * The paper also used an equation for the amount of white W, which is | based on a Q value not expressed in 'bright' ('cA' = 0.937 instead of 123). | This has been corrected for in the luxpy version of the model, i.e. | _CAM18SL_PARAMETERS['cW'][0] has been changed from 2.29 to 1/11672. | (see future erratum to Hermans et al., 2018) | * Default output was 'Q,aW,bW' prior to March 2020, but since this | is an a,b Cartesian system centered on (1,0), the default output | has been changed to 'Q,aS,bS'. References: 1. `Hermans, S., Smet, K. A. G., & Hanselaer, P. (2018). "Color appearance model for self-luminous stimuli." Journal of the Optical Society of America A, 35(12), 2000–2009. <https://doi.org/10.1364/JOSAA.35.002000>`_ """ if parameters is None: parameters = _CAM18SL_PARAMETERS outin = outin.split(',') #unpack model parameters: cA, cAlms, cHK, cM, cW, ca, calms, cb, cblms, cfov, cieobs, k, naka, unique_hue_data = [ parameters[x] for x in sorted(parameters.keys()) ] # precomputations: Mlms2xyz = np.linalg.inv(_CMF[cieobs]['M']) MAab = np.array([cAlms, calms, cblms]) invMAab = np.linalg.inv(MAab) #------------------------------------------------- # setup EEW reference field and default background field (Lr should be equal to Lb): # Get Lb values: if datab is not None: if inputtype != 'xyz': Lb = spd_to_xyz(datab, cieobs=cieobs, relative=False)[..., 1:2] else: Lb = datab[..., 1:2] else: if isinstance(Lb, list): Lb = np2dT(Lb) # Setup EEW ref of same luminance as datab: if inputtype == 'xyz': wlr = getwlr(_CAM18SL_WL3) else: if datab is None: wlr = data[0] # use wlr of stimulus data else: wlr = datab[0] # use wlr of background data datar = np.vstack((wlr, np.ones( (Lb.shape[0], wlr.shape[0])))) # create eew xyzr = spd_to_xyz(datar, cieobs=cieobs, relative=False) # get abs. tristimulus values datar[1:] = datar[1:] / xyzr[..., 1:2] * Lb # Create datab if None: if (datab is None): if inputtype != 'xyz': datab = datar.copy() else: datab = spd_to_xyz(datar, cieobs=cieobs, relative=False) # prepare data and datab for loop over backgrounds: # make axis 1 of datab have 'same' dimensions as data: if (data.ndim == 2): data = np.expand_dims(data, axis=1) # add light source axis 1 if inputtype == 'xyz': datar = spd_to_xyz(datar, cieobs=cieobs, relative=False) # convert to xyz!! if datab.shape[ 0] == 1: #make datab and datar have same lights source dimension (used to store different backgrounds) size as data datab = np.repeat(datab, data.shape[1], axis=0) datar = np.repeat(datar, data.shape[1], axis=0) else: if datab.shape[0] == 2: datab = np.vstack( (datab[0], np.repeat(datab[1:], data.shape[1], axis=0))) if datar.shape[0] == 2: datar = np.vstack( (datar[0], np.repeat(datar[1:], data.shape[1], axis=0))) # Flip light source/ background dim to axis 0: data = np.transpose(data, axes=(1, 0, 2)) #------------------------------------------------- #initialize camout: dshape = list(data.shape) dshape[-1] = len(outin) # requested number of correlates if (inputtype != 'xyz') & (direction == 'forward'): dshape[-2] = dshape[ -2] - 1 # wavelength row doesn't count & only with forward can the input data be spectral camout = np.zeros(dshape) camout.fill(np.nan) for i in range(data.shape[0]): # get rho, gamma, beta of background and reference white: if (inputtype != 'xyz'): xyzb = spd_to_xyz(np.vstack((datab[0], datab[i + 1:i + 2, :])), cieobs=cieobs, relative=False) xyzr = spd_to_xyz(np.vstack((datar[0], datar[i + 1:i + 2, :])), cieobs=cieobs, relative=False) else: xyzb = datab[i:i + 1, :] xyzr = datar[i:i + 1, :] lmsb = np.dot(_CMF[cieobs]['M'], xyzb.T).T # convert to l,m,s rgbb = (lmsb / _CMF[cieobs]['K']) * k # convert to rho, gamma, beta #lmsr = np.dot(_CMF[cieobs]['M'],xyzr.T).T # convert to l,m,s #rgbr = (lmsr / _CMF[cieobs]['K']) * k # convert to rho, gamma, beta #rgbr = rgbr/rgbr[...,1:2]*Lb[i] # calculated EEW cone excitations at same luminance values as background rgbr = np.ones(xyzr.shape) * Lb[ i] # explicitely equal EEW cone excitations at same luminance values as background if direction == 'forward': # get rho, gamma, beta of stimulus: if (inputtype != 'xyz'): xyz = spd_to_xyz(data[i], cieobs=cieobs, relative=False) elif (inputtype == 'xyz'): xyz = data[i] lms = np.dot(_CMF[cieobs]['M'], xyz.T).T # convert to l,m,s rgb = (lms / _CMF[cieobs]['K']) * k # convert to rho, gamma, beta # apply von-kries cat with D = 1: if (rgbb == 0).any(): Mcat = np.eye(3) else: Mcat = np.diag((rgbr / rgbb)[0]) rgba = np.dot(Mcat, rgb.T).T # apply naka-rushton compression: rgbc = naka_rushton(rgba, n=naka['n'], sig=naka['sig'](rgbr.mean()), noise=naka['noise'], scaling=naka['scaling']) #rgbc = np.ones(rgbc.shape)*rgbc.mean() # test if eew ends up at origin # calculate achromatic and color difference signals, A, a, b: Aab = np.dot(MAab, rgbc.T).T A, a, b = asplit(Aab) a = ca * a b = cb * b # calculate colorfullness like signal M: M = cM * ((a**2.0 + b**2.0)**0.5) # calculate brightness Q: Q = cA * ( A + cHK[0] * M**cHK[1] ) # last term is contribution of Helmholtz-Kohlrausch effect on brightness # calculate saturation, s: s = M / Q S = s # make extra variable, jsut in case 'S' is called # calculate amount of white, W: W = 1 / (1.0 + cW[0] * (s**cW[1])) # adjust Q for size (fov) of stimulus (matter of debate whether to do this before or after calculation of s or W, there was no data on s, M or W for different sized stimuli: after) Q = Q * (fov / 10.0)**cfov # calculate hue, h and Hue quadrature, H: h = hue_angle(a, b, htype='deg') if 'H' in outin: H = hue_quadrature(h, unique_hue_data=unique_hue_data) else: H = None # calculate cart. co.: if 'aM' in outin: aM = M * np.cos(h * np.pi / 180.0) bM = M * np.sin(h * np.pi / 180.0) if 'aS' in outin: aS = s * np.cos(h * np.pi / 180.0) bS = s * np.sin(h * np.pi / 180.0) if 'aW' in outin: aW = W * np.cos(h * np.pi / 180.0) bW = W * np.sin(h * np.pi / 180.0) if (outin != ['Q', 'as', 'bs']): camout[i] = eval('ajoin((' + ','.join(outin) + '))') else: camout[i] = ajoin((Q, aS, bS)) elif direction == 'inverse': # get Q, M and a, b depending on input type: if 'aW' in outin: Q, a, b = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref W = (a**2.0 + b**2.0)**0.5 s = (((1.0 / W) - 1.0) / cW[0])**(1.0 / cW[1]) M = s * Q if 'aM' in outin: Q, a, b = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref M = (a**2.0 + b**2.0)**0.5 if 'aS' in outin: Q, a, b = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref s = (a**2.0 + b**2.0)**0.5 M = s * Q if 'h' in outin: Q, WsM, h = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref if 'W' in outin: s = (((1.0 / WsM) - 1.0) / cW[0])**(1.0 / cW[1]) M = s * Q elif 's' in outin: M = WsM * Q elif 'M' in outin: M = WsM # calculate achromatic signal, A from Q and M: A = Q / cA - cHK[0] * M**cHK[1] # calculate hue angle: h = hue_angle(a, b, htype='rad') # calculate a,b from M and h: a = (M / cM) * np.cos(h) b = (M / cM) * np.sin(h) a = a / ca b = b / cb # create Aab: Aab = ajoin((A, a, b)) # calculate rgbc: rgbc = np.dot(invMAab, Aab.T).T # decompress rgbc to (adapted) rgba : rgba = naka_rushton(rgbc, n=naka['n'], sig=naka['sig'](rgbr.mean()), noise=naka['noise'], scaling=naka['scaling'], direction='inverse') # apply inverse von-kries cat with D = 1: rgb = np.dot(np.diag((rgbb / rgbr)[0]), rgba.T).T # convert rgb to lms to xyz: lms = rgb / k * _CMF[cieobs]['K'] xyz = np.dot(Mlms2xyz, lms.T).T camout[i] = xyz camout = np.transpose(camout, axes=(1, 0, 2)) if camout.shape[1] == 1: camout = np.squeeze(camout, axis=1) return camout