def cct_to_xyz(ccts, duv=None, cieobs=_CIEOBS, wl=None, mode='lut', out=None, accuracy=0.1, force_out_of_lut=True, upper_cct_max=10.0 * 20, approx_cct_temp=True): """ Convert correlated color temperature (CCT) and Duv (distance above (>0) or below (<0) the Planckian locus) to XYZ tristimulus values. | Finds xyzw_estimated by minimization of: | | F = numpy.sqrt(((100.0*(cct_min - cct)/(cct))**2.0) | + (((duv_min - duv)/(duv))**2.0)) | | with cct,duv the input values and cct_min, duv_min calculated using | luxpy.xyz_to_cct(xyzw_estimated,...). Args: :ccts: | ndarray of cct values :duv: | None or ndarray of duv values, optional | Note that duv can be supplied together with cct values in :ccts: as ndarray with shape (N,2) :cieobs: | luxpy._CIEOBS, optional | CMF set used to calculated xyzw. :mode: | 'lut' or 'search', optional | Determines what method to use. :out: | None (or 1), optional | If not None or 1: output a ndarray that contains estimated xyz and minimization results: | (cct_min, duv_min, F_min (objective fcn value)) :wl: | None, optional | Wavelengths used when calculating Planckian radiators. :accuracy: | float, optional | Stop brute-force search when cct :accuracy: is reached. :upper_cct_max: | 10.0**20, optional | Limit brute-force search to this cct. :approx_cct_temp: | True, optional | If True: use xyz_to_cct_HA() to get a first estimate of cct to speed up search. :force_out_of_lut: | True, optional | If True and cct is out of range of the LUT, then switch to brute-force search method, else return numpy.nan values. Returns: :returns: | ndarray with estimated XYZ tristimulus values Note: If duv is not supplied (:ccts:.shape is (N,1) and :duv: is None), source is assumed to be on the Planckian locus. """ # make ccts a min. 2d np.array: if isinstance(ccts, list): ccts = np2dT(np.array(ccts)) else: ccts = np2d(ccts) if len(ccts.shape) > 2: raise Exception('cct_to_xyz(): Input ccts.shape must be <= 2 !') # get cct and duv arrays from :ccts: cct = np2d(ccts[:, 0, None]) if (duv is None) & (ccts.shape[1] == 2): duv = np2d(ccts[:, 1, None]) elif duv is not None: duv = np2d(duv) #get estimates of approximate xyz values in case duv = None: BB = cri_ref(ccts=cct, wl3=wl, ref_type=['BB']) xyz_est = spd_to_xyz(data=BB, cieobs=cieobs, out=1) results = np.ones([ccts.shape[0], 3]) * np.nan if duv is not None: # optimization/minimization setup: def objfcn(uv_offset, uv0, cct, duv, out=1): #, cieobs = cieobs, wl = wl, mode = mode): uv0 = np2d(uv0 + uv_offset) Yuv0 = np.concatenate((np2d([100.0]), uv0), axis=1) cct_min, duv_min = xyz_to_cct(Yuv_to_xyz(Yuv0), cieobs=cieobs, out='cct,duv', wl=wl, mode=mode, accuracy=accuracy, force_out_of_lut=force_out_of_lut, upper_cct_max=upper_cct_max, approx_cct_temp=approx_cct_temp) F = np.sqrt(((100.0 * (cct_min[0] - cct[0]) / (cct[0]))**2.0) + (((duv_min[0] - duv[0]) / (duv[0]))**2.0)) if out == 'F': return F else: return np.concatenate((cct_min, duv_min, np2d(F)), axis=1) # loop through each xyz_est: for i in range(xyz_est.shape[0]): xyz0 = xyz_est[i] cct_i = cct[i] duv_i = duv[i] cct_min, duv_min = xyz_to_cct(xyz0, cieobs=cieobs, out='cct,duv', wl=wl, mode=mode, accuracy=accuracy, force_out_of_lut=force_out_of_lut, upper_cct_max=upper_cct_max, approx_cct_temp=approx_cct_temp) if np.abs(duv[i]) > _EPS: # find xyz: Yuv0 = xyz_to_Yuv(xyz0) uv0 = Yuv0[0][1:3] OptimizeResult = minimize(fun=objfcn, x0=np.zeros((1, 2)), args=(uv0, cct_i, duv_i, 'F'), method='Nelder-Mead', options={ "maxiter": np.inf, "maxfev": np.inf, 'xatol': 0.000001, 'fatol': 0.000001 }) betas = OptimizeResult['x'] #betas = np.zeros(uv0.shape) if out is not None: results[i] = objfcn(betas, uv0, cct_i, duv_i, out=3) uv0 = np2d(uv0 + betas) Yuv0 = np.concatenate((np2d([100.0]), uv0), axis=1) xyz_est[i] = Yuv_to_xyz(Yuv0) else: xyz_est[i] = xyz0 if (out is None) | (out == 1): return xyz_est else: # Also output results of minimization: return np.concatenate((xyz_est, results), axis=1)
def xyz_to_cct_search(xyzw, cieobs=_CIEOBS, out='cct', wl=None, accuracy=0.1, upper_cct_max=10.0**20, approx_cct_temp=True): """ Convert XYZ tristimulus values to correlated color temperature (CCT) and Duv(distance above (> 0) or below ( < 0) the Planckian locus) by a brute-force search. | The algorithm uses an approximate cct_temp (HA approx., see xyz_to_cct_HA) as starting point or uses the middle of the allowed cct-range (1e2 K - 1e20 K, higher causes overflow) on a log-scale, then constructs a 4-step section of the blackbody (Planckian) locus on which to find the minimum distance to the 1960 uv chromaticity of the test source. Args: :xyzw: | ndarray of tristimulus values :cieobs: | luxpy._CIEOBS, optional | CMF set used to calculated xyzw. :out: | 'cct' (or 1), optional | Determines what to return. | Other options: 'duv' (or -1), 'cct,duv'(or 2), "[cct,duv]" (or -2) :wl: | None, optional | Wavelengths used when calculating Planckian radiators. :accuracy: | float, optional | Stop brute-force search when cct :accuracy: is reached. :upper_cct_max: | 10.0**20, optional | Limit brute-force search to this cct. :approx_cct_temp: | True, optional | If True: use xyz_to_cct_HA() to get a first estimate of cct to speed up search. Returns: :returns: | ndarray with: | cct: out == 'cct' (or 1) | duv: out == 'duv' (or -1) | cct, duv: out == 'cct,duv' (or 2) | [cct,duv]: out == "[cct,duv]" (or -2) Notes: This program is more accurate, but slower than xyz_to_cct_ohno! Note that cct must be between 1e3 K - 1e20 K (very large cct take a long time!!!) """ xyzw = np2d(xyzw) if len(xyzw.shape) > 2: raise Exception('xyz_to_cct_search(): Input xyzw.shape must be <= 2 !') # get 1960 u,v of test source: Yuvt = xyz_to_Yuv(np.squeeze( xyzw)) # remove possible 1-dim + convert xyzw to CIE 1976 u',v' #axis_of_v3t = len(Yuvt.shape)-1 # axis containing color components ut = Yuvt[:, 1, None] #.take([1],axis = axis_of_v3t) # get CIE 1960 u vt = (2 / 3) * Yuvt[:, 2, None] #.take([2],axis = axis_of_v3t) # get CIE 1960 v # Initialize arrays: ccts = np.ones((xyzw.shape[0], 1)) * np.nan duvs = ccts.copy() #calculate preliminary solution(s): if (approx_cct_temp == True): ccts_est = xyz_to_cct_HA(xyzw) procent_estimates = np.array([[3000.0, 100000.0, 0.05], [100000.0, 200000.0, 0.1], [200000.0, 300000.0, 0.25], [300000.0, 400000.0, 0.4], [400000.0, 600000.0, 0.4], [600000.0, 800000.0, 0.4], [800000.0, np.inf, 0.25]]) else: upper_cct = np.array(upper_cct_max) lower_cct = np.array(10.0**2) cct_scale_fun = lambda x: np.log10(x) cct_scale_ifun = lambda x: np.power(10.0, x) dT = (cct_scale_fun(upper_cct) - cct_scale_fun(lower_cct)) / 2 ccttemp = np.array([cct_scale_ifun(cct_scale_fun(lower_cct) + dT)]) ccts_est = np2d(ccttemp * np.ones((xyzw.shape[0], 1))) dT_approx_cct_False = dT.copy() # Loop through all ccts: for i in range(xyzw.shape[0]): #initialize CCT search parameters: cct = np.nan duv = np.nan ccttemp = ccts_est[i].copy() # Take care of (-1, NaN)'s from xyz_to_cct_HA signifying (CCT < lower, CCT > upper) bounds: approx_cct_temp_temp = approx_cct_temp if (approx_cct_temp == True): cct_scale_fun = lambda x: x cct_scale_ifun = lambda x: x if (ccttemp != -1) & ( np.isnan(ccttemp) == False ): # within validity range of CCT estimator-function for ii in range(procent_estimates.shape[0]): if (ccttemp >= (1.0 - 0.05 * (ii == 0)) * procent_estimates[ii, 0]) & ( ccttemp < (1.0 + 0.05 * (ii == 0)) * procent_estimates[ii, 1]): procent_estimate = procent_estimates[ii, 2] break dT = np.multiply( ccttemp, procent_estimate ) # determines range around CCTtemp (25% around estimate) or 100 K elif (ccttemp == -1) & (np.isnan(ccttemp) == False): ccttemp = np.array([procent_estimates[0, 0] / 2]) procent_estimate = 1 # cover 0 K to min_CCT of estimator dT = np.multiply(ccttemp, procent_estimate) elif (np.isnan(ccttemp) == True): upper_cct = np.array(upper_cct_max) lower_cct = np.array(10.0**2) cct_scale_fun = lambda x: np.log10(x) cct_scale_ifun = lambda x: np.power(10.0, x) dT = (cct_scale_fun(upper_cct) - cct_scale_fun(lower_cct)) / 2 ccttemp = np.array( [cct_scale_ifun(cct_scale_fun(lower_cct) + dT)]) approx_cct_temp = False else: dT = dT_approx_cct_False nsteps = 3 signduv = 1.0 ccttemp = ccttemp[0] delta_cct = dT while ((delta_cct > accuracy)): # keep converging on CCT #generate range of ccts: ccts_i = cct_scale_ifun( np.linspace( cct_scale_fun(ccttemp) - dT, cct_scale_fun(ccttemp) + dT, nsteps + 1)) ccts_i[ccts_i < 100.0] = 100.0 # avoid nan's in calculation # Generate BB: BB = cri_ref(ccts_i, wl3=wl, ref_type=['BB'], cieobs=cieobs) # Calculate xyz: xyz = spd_to_xyz(BB, cieobs=cieobs) # Convert to CIE 1960 u,v: Yuv = xyz_to_Yuv(np.squeeze( xyz)) # remove possible 1-dim + convert xyz to CIE 1976 u',v' #axis_of_v3 = len(Yuv.shape)-1 # axis containing color components u = Yuv[:, 1, None] # get CIE 1960 u v = (2.0 / 3.0) * Yuv[:, 2, None] # get CIE 1960 v # Calculate distance between list of uv's and uv of test source: dc = ((ut[i] - u)**2 + (vt[i] - v)**2)**0.5 if np.isnan(dc.min()) == False: #eps = _EPS q = dc.argmin() if np.size( q ) > 1: #to minimize calculation time: only calculate median when necessary cct = np.median(ccts[q]) duv = np.median(dc[q]) q = np.median(q) q = int(q) #must be able to serve as index else: cct = ccts_i[q] duv = dc[q] if (q == 0): ccttemp = cct_scale_ifun( np.array(cct_scale_fun([cct])) + 2 * dT / nsteps) #dT = 2.0*dT/nsteps continue # look in higher section of planckian locus if (q == np.size(ccts_i)): ccttemp = cct_scale_ifun( np.array(cct_scale_fun([cct])) - 2 * dT / nsteps) #dT = 2.0*dT/nsteps continue # look in lower section of planckian locus if (q > 0) & (q < np.size(ccts_i) - 1): dT = 2 * dT / nsteps # get Duv sign: d_p1m1 = ((u[q + 1] - u[q - 1])**2.0 + (v[q + 1] - v[q - 1])**2.0)**0.5 x = (dc[q - 1]**2.0 - dc[q + 1]**2.0 + d_p1m1**2.0) / 2.0 * d_p1m1 vBB = v[q - 1] + ((v[q + 1] - v[q - 1]) * (x / d_p1m1)) signduv = np.sign(vt[i] - vBB) #calculate difference with previous intermediate solution: delta_cct = abs(cct - ccttemp) ccttemp = np.array(cct) #%set new intermediate CCT approx_cct_temp = approx_cct_temp_temp else: ccttemp = np.nan cct = np.nan duv = np.nan duvs[i] = signduv * abs(duv) ccts[i] = cct # Regulate output: if (out == 'cct') | (out == 1): return np2d(ccts) elif (out == 'duv') | (out == -1): return np2d(duvs) elif (out == 'cct,duv') | (out == 2): return np2d(ccts), np2d(duvs) elif (out == "[cct,duv]") | (out == -2): return np.vstack((ccts, duvs)).T
def plotBB(ccts=None, cieobs=_CIEOBS, cspace=_CSPACE, axh=None, cctlabels=True, show=True, cspace_pars={}, formatstr='k-', **kwargs): """ Plot blackbody locus. Args: :ccts: | None or list[float], optional | None defaults to [1000 to 1e19 K]. | Range: | [1000,1500,2000,2500,3000,3500,4000,5000,6000,8000,10000] | + [15000 K to 1e19 K] in 100 steps on a log10 scale :cctlabels: | True or False, optional | Add cct text labels at various points along the blackbody locus. :axh: | None or axes handle, optional | Determines axes to plot data in. | None: make new figure. :show: | True or False, optional | Invoke matplotlib.pyplot.show() right after plotting :cieobs: | luxpy._CIEOBS or str, optional | Determines CMF set to calculate spectrum locus or other. :cspace: | luxpy._CSPACE or str, optional | Determines color space / chromaticity diagram to plot data in. | Note that data is expected to be in specified :cspace: :formatstr: | 'k-' or str, optional | Format str for plotting (see ?matplotlib.pyplot.plot) :cspace_pars: | {} or dict, optional | Dict with parameters required by color space specified in :cspace: | (for use with luxpy.colortf()) :kwargs: | additional keyword arguments for use with matplotlib.pyplot. Returns: :returns: | None (:show: == True) | or | handle to current axes (:show: == False) """ if ccts is None: ccts1 = np.array([ 1000.0, 1500.0, 2000.0, 2500.0, 3000.0, 3500.0, 4000.0, 5000.0, 6000.0, 8000.0, 10000.0 ]) ccts2 = 10**np.linspace(np.log10(15000.0), np.log10(10.0**19.0), 100) ccts = np.hstack((ccts1, ccts2)) else: ccts1 = None BB = cri_ref(ccts, ref_type='BB') xyz = spd_to_xyz(BB, cieobs=cieobs) Yxy = colortf(xyz, tf=cspace, tfa0=cspace_pars) Y, x, y = asplit(Yxy) axh = plot_color_data(x, y, axh=axh, cieobs=cieobs, cspace=cspace, show=show, formatstr=formatstr, **kwargs) if (cctlabels == True) & (ccts1 is not None): for i in range(ccts1.shape[0]): if ccts1[i] >= 3000.0: if i % 2 == 0.0: axh.plot(x[i], y[i], 'k+', color='0.5') axh.text(x[i] * 1.05, y[i] * 0.95, '{:1.0f}K'.format(ccts1[i]), color='0.5') axh.plot(x[-1], y[-1], 'k+', color='0.5') axh.text(x[-1] * 1.05, y[-1] * 0.95, '{:1.0e}K'.format(ccts[-1]), color='0.5') if show == False: return axh
================================================================== .. codeauthor:: Kevin A.G. Smet (ksmet1977 at gmail.com) """ import luxpy as lx # package for color science calculations import matplotlib.pyplot as plt # package for plotting import numpy as np # fundamental package for scientific computing import timeit # package for timing functions cieobs = '1964_10' # set CIE observer, i.e. cmf set ccts = [3000, 4000, 4500, 6000] # define M = 4 CCTs ref_types = ['BB', 'DL', 'cierf', 'DL'] # define reference illuminant types # calculate reference illuminants: REF = lx.cri_ref(ccts, ref_type=ref_types, norm_type='lambda', norm_f=600) TCS8 = lx._CRI_RFL['cie-13.3-1995']['8'] # 8 TCS from CIE 13.3-1995 xyz_TCS8_REF = lx.spd_to_xyz(REF, cieobs=cieobs, rfl=TCS8, relative=True) xyz_TCS8_REF_2, xyz_REF_2 = lx.spd_to_xyz(REF, cieobs=cieobs, rfl=TCS8, relative=True, out=2) Yuv_REF_2 = lx.xyz_to_Yuv(xyz_REF_2) axh = lx.plotSL(cspace = 'Yuv', cieobs = cieobs, show = False,\ BBL = True, DL = True, diagram_colors = True) # Step 2: Y, u, v = np.squeeze(lx.asplit(Yuv_REF_2)) # splits array along last axis
-0.679 * np.log(cct / 2194)**2) - 0.0172 D = np.exp(-(3912 * ((1 / cct) - (1 / 6795)))**2) # degree of adaptation else: raise Exception('Unrecognized nlocitype') if out == 'duv,D': return duv, D elif out == 'duv': return duv elif out == 'D': return D else: raise Exception('smet_white_loci(): Requested output unrecognized.') if __name__ == '__main__': ccts = np.array([6605, 6410, 6800]) BBs = cri_ref(ccts, ref_type=['BB', 'BB', 'BB']) xyz10 = spd_to_xyz(BBs, cieobs='1964_10') ccts_calc = xyz_to_cct(xyz10, cieobs='1964_10') Dn_uw = xyz_to_neutrality_smet2018(xyz10, nlocitype='uw') Dn_ca = xyz_to_neutrality_smet2018(xyz10, nlocitype='ca') Duv10_uw, Dn_uw2 = cct_to_neutral_loci_smet2018(ccts, nlocitype='uw', out='duv,D') Duv10_ca, Dn_ca2 = cct_to_neutral_loci_smet2018(ccts, nlocitype='ca', out='duv,D')