def load_s2n_values(objtype, nights, channel, sub_exposures=None): fdict = dict(waves=[], s2n=[], fluxes=[], exptime=[], OII=[]) for night in nights: if sub_exposures is not None: exposures = sub_exposures else: exposures = get_exposures(night) #, raw=True) for exposure in exposures: fibermap_path = findfile(filetype='fibermap', night=night, expid=exposure) fibermap_data = read_fibermap(fibermap_path) flavor = fibermap_data.meta['FLAVOR'] if flavor.lower() in ('arc', 'flat', 'bias'): log.debug('Skipping calibration {} exposure {:08d}'.format( flavor, exposure)) continue # Load simspec simspec_file = fibermap_path.replace('fibermap', 'simspec') sps_hdu = fits.open(simspec_file) sps_tab = Table(sps_hdu['TRUTH'].data, masked=True) sps_hdu.close() objs = sps_tab['TEMPLATETYPE'] == objtype if np.sum(objs) == 0: continue # Load spectra (flux or not fluxed; should not matter) for ii in range(10): camera = channel + str(ii) cframe_path = findfile(filetype='cframe', night=night, expid=exposure, camera=camera) try: cframe = read_frame(cframe_path) except: log.warn("Cannot find file: {:s}".format(cframe_path)) continue # Calculate S/N per Ang dwave = cframe.wave - np.roll(cframe.wave, 1) dwave[0] = dwave[1] # iobjs = objs[cframe.fibers] if np.sum(iobjs) == 0: continue s2n = cframe.flux[iobjs, :] * np.sqrt( cframe.ivar[iobjs, :]) / np.sqrt(dwave) # Save fdict['waves'].append(cframe.wave) fdict['s2n'].append(s2n) fdict['fluxes'].append(sps_tab['MAG'][cframe.fibers[iobjs]]) if objtype == 'ELG': fdict['OII'].append( sps_tab['OIIFLUX'][cframe.fibers[iobjs]]) fdict['exptime'].append(cframe.meta['EXPTIME']) # Return return fdict
def main(args): log = get_logger() if (args.fiberflat is None) and (args.sky is None) and (args.calib is None): log.critical('no --fiberflat, --sky, or --calib; nothing to do ?!?') sys.exit(12) frame = read_frame(args.infile) if args.cosmics_nsig>0 : # Reject cosmics reject_cosmic_rays_1d(frame,args.cosmics_nsig) if args.fiberflat!=None : log.info("apply fiberflat") # read fiberflat fiberflat = read_fiberflat(args.fiberflat) # apply fiberflat to sky fibers apply_fiberflat(frame, fiberflat) if args.sky!=None : log.info("subtract sky") # read sky skymodel=read_sky(args.sky) # subtract sky subtract_sky(frame, skymodel) if args.calib!=None : log.info("calibrate") # read calibration fluxcalib=read_flux_calibration(args.calib) # apply calibration apply_flux_calibration(frame, fluxcalib) if args.cosmics_nsig>0 : # Reject cosmics one more time after sky subtraction to catch cosmics close to sky lines reject_cosmic_rays_1d(frame,args.cosmics_nsig) # save output write_frame(args.outfile, frame, units='1e-17 erg/(s cm2 A)') log.info("successfully wrote %s"%args.outfile)
def main(args) : log=get_logger() log.info("starting") # read exposure to load data and get range of spectra frame = read_frame(args.infile) specmin, specmax = np.min(frame.fibers), np.max(frame.fibers) if args.cosmics_nsig>0 : # Reject cosmics reject_cosmic_rays_1d(frame,args.cosmics_nsig) # read fiberflat fiberflat = read_fiberflat(args.fiberflat) # apply fiberflat to sky fibers apply_fiberflat(frame, fiberflat) # compute sky model skymodel = compute_sky(frame,add_variance=(not args.no_extra_variance)) # QA if (args.qafile is not None) or (args.qafig is not None): log.info("performing skysub QA") # Load qaframe = load_qa_frame(args.qafile, frame, flavor=frame.meta['FLAVOR']) # Run qaframe.run_qa('SKYSUB', (frame, skymodel)) # Write if args.qafile is not None: write_qa_frame(args.qafile, qaframe) log.info("successfully wrote {:s}".format(args.qafile)) # Figure(s) if args.qafig is not None: qa_plots.frame_skyres(args.qafig, frame, skymodel, qaframe) # write result write_sky(args.outfile, skymodel, frame.meta) log.info("successfully wrote %s"%args.outfile)
def main(args): log = get_logger() log.info("starting at {}".format(time.asctime())) # Process frame = read_frame(args.infile) if args.cosmics_nsig > 0: # Reject cosmics reject_cosmic_rays_1d(frame, args.cosmics_nsig) fiberflat = compute_fiberflat(frame, nsig_clipping=args.nsig, accuracy=args.acc, smoothing_res=args.smoothing_resolution) # QA if (args.qafile is not None): log.info("performing fiberflat QA") # Load qaframe = load_qa_frame(args.qafile, frame, flavor=frame.meta['FLAVOR']) # Run qaframe.run_qa('FIBERFLAT', (frame, fiberflat)) # Write if args.qafile is not None: write_qa_frame(args.qafile, qaframe) log.info("successfully wrote {:s}".format(args.qafile)) # Figure(s) if args.qafig is not None: qa_plots.frame_fiberflat(args.qafig, qaframe, frame, fiberflat) # Write write_fiberflat(args.outfile, fiberflat, frame.meta) log.info("successfully wrote %s" % args.outfile) log.info("done at {}".format(time.asctime()))
def main(args): log = get_logger() log.info("read frame") # read frame frame = read_frame(args.infile) log.info("apply fiberflat") # read fiberflat fiberflat = read_fiberflat(args.fiberflat) # apply fiberflat apply_fiberflat(frame, fiberflat) log.info("subtract sky") # read sky skymodel = read_sky(args.sky) # subtract sky subtract_sky(frame, skymodel) log.info("compute flux calibration") # read models model_flux, model_wave, model_fibers, model_metadata = read_stdstar_models( args.models) if args.chi2cut > 0: ok = np.where(model_metadata["CHI2DOF"] < args.chi2cut)[0] if ok.size == 0: log.error("chi2cut has discarded all stars") sys.exit(12) nstars = model_flux.shape[0] nbad = nstars - ok.size if nbad > 0: log.warning("discarding %d star(s) out of %d because of chi2cut" % (nbad, nstars)) model_flux = model_flux[ok] model_fibers = model_fibers[ok] model_metadata = model_metadata[:][ok] if args.delta_color_cut > 0: ok = np.where( np.abs(model_metadata["MODEL_G-R"] - model_metadata["DATA_G-R"]) < args.delta_color_cut)[0] nstars = model_flux.shape[0] nbad = nstars - ok.size if nbad > 0: log.warning( "discarding %d star(s) out of %d because |delta_color|>%f" % (nbad, nstars, args.delta_color_cut)) model_flux = model_flux[ok] model_fibers = model_fibers[ok] model_metadata = model_metadata[:][ok] # automatically reject stars that ar chi2 outliers if args.chi2cut_nsig > 0: mchi2 = np.median(model_metadata["CHI2DOF"]) rmschi2 = np.std(model_metadata["CHI2DOF"]) maxchi2 = mchi2 + args.chi2cut_nsig * rmschi2 ok = np.where(model_metadata["CHI2DOF"] <= maxchi2)[0] nstars = model_flux.shape[0] nbad = nstars - ok.size if nbad > 0: log.warning( "discarding %d star(s) out of %d because reduced chi2 outliers (at %d sigma, giving rchi2<%f )" % (nbad, nstars, args.chi2cut_nsig, maxchi2)) model_flux = model_flux[ok] model_fibers = model_fibers[ok] model_metadata = model_metadata[:][ok] # check that the model_fibers are actually standard stars fibermap = frame.fibermap ## check whether star fibers from args.models are consistent with fibers from fibermap ## if not print the OBJTYPE from fibermap for the fibers numbers in args.models and exit w = np.where(fibermap["OBJTYPE"][model_fibers % 500] != 'STD')[0] if len(w) > 0: for i in model_fibers % 500: log.error( "inconsistency with spectrum %d, OBJTYPE='%s' in fibermap" % (i, fibermap["OBJTYPE"][i])) sys.exit(12) fluxcalib = compute_flux_calibration(frame, model_wave, model_flux, model_fibers % 500) # QA if (args.qafile is not None): log.info("performing fluxcalib QA") # Load qaframe = load_qa_frame(args.qafile, frame, flavor=frame.meta['FLAVOR']) # Run #import pdb; pdb.set_trace() qaframe.run_qa('FLUXCALIB', (frame, fluxcalib)) # Write if args.qafile is not None: write_qa_frame(args.qafile, qaframe) log.info("successfully wrote {:s}".format(args.qafile)) # Figure(s) if args.qafig is not None: qa_plots.frame_fluxcalib(args.qafig, qaframe, frame, fluxcalib) # write result write_flux_calibration(args.outfile, fluxcalib, header=frame.meta) log.info("successfully wrote %s" % args.outfile)
def main(args): """ finds the best models of all standard stars in the frame and normlize the model flux. Output is written to a file and will be called for calibration. """ log = get_logger() log.info("mag delta %s = %f (for the pre-selection of stellar models)" % (args.color, args.delta_color)) frames = {} flats = {} skies = {} spectrograph = None starfibers = None starindices = None fibermap = None # READ DATA ############################################ for filename in args.frames: log.info("reading %s" % filename) frame = io.read_frame(filename) header = fits.getheader(filename, 0) frame_fibermap = frame.fibermap frame_starindices = np.where(frame_fibermap["OBJTYPE"] == "STD")[0] # check magnitude are well defined or discard stars tmp = [] for i in frame_starindices: mags = frame_fibermap["MAG"][i] ok = np.sum((mags > 0) & (mags < 30)) if np.sum((mags > 0) & (mags < 30)) == mags.size: tmp.append(i) frame_starindices = np.array(tmp).astype(int) camera = safe_read_key(header, "CAMERA").strip().lower() if spectrograph is None: spectrograph = frame.spectrograph fibermap = frame_fibermap starindices = frame_starindices starfibers = fibermap["FIBER"][starindices] elif spectrograph != frame.spectrograph: log.error("incompatible spectrographs %d != %d" % (spectrograph, frame.spectrograph)) raise ValueError("incompatible spectrographs %d != %d" % (spectrograph, frame.spectrograph)) elif starindices.size != frame_starindices.size or np.sum( starindices != frame_starindices) > 0: log.error("incompatible fibermap") raise ValueError("incompatible fibermap") if not camera in frames: frames[camera] = [] frames[camera].append(frame) for filename in args.skymodels: log.info("reading %s" % filename) sky = io.read_sky(filename) header = fits.getheader(filename, 0) camera = safe_read_key(header, "CAMERA").strip().lower() if not camera in skies: skies[camera] = [] skies[camera].append(sky) for filename in args.fiberflats: log.info("reading %s" % filename) header = fits.getheader(filename, 0) flat = io.read_fiberflat(filename) camera = safe_read_key(header, "CAMERA").strip().lower() # NEED TO ADD MORE CHECKS if camera in flats: log.warning( "cannot handle several flats of same camera (%s), will use only the first one" % camera) #raise ValueError("cannot handle several flats of same camera (%s)"%camera) else: flats[camera] = flat if starindices.size == 0: log.error("no STD star found in fibermap") raise ValueError("no STD star found in fibermap") log.info("found %d STD stars" % starindices.size) imaging_filters = fibermap["FILTER"][starindices] imaging_mags = fibermap["MAG"][starindices] log.warning( "NO MAG ERRORS IN FIBERMAP, I AM IGNORING MEASUREMENT ERRORS !!") ebv = np.zeros(starindices.size) if "SFD_EBV" in fibermap.columns.names: log.info("Using 'SFD_EBV' from fibermap") ebv = fibermap["SFD_EBV"][starindices] else: log.warning("NO EXTINCTION VALUES IN FIBERMAP!!") # DIVIDE FLAT AND SUBTRACT SKY , TRIM DATA ############################################ for cam in frames: if not cam in skies: log.warning("Missing sky for %s" % cam) frames.pop(cam) continue if not cam in flats: log.warning("Missing flat for %s" % cam) frames.pop(cam) continue flat = flats[cam] for frame, sky in zip(frames[cam], skies[cam]): frame.flux = frame.flux[starindices] frame.ivar = frame.ivar[starindices] frame.ivar *= (frame.mask[starindices] == 0) frame.ivar *= (sky.ivar[starindices] != 0) frame.ivar *= (sky.mask[starindices] == 0) frame.ivar *= (flat.ivar[starindices] != 0) frame.ivar *= (flat.mask[starindices] == 0) frame.flux *= (frame.ivar > 0) # just for clean plots for star in range(frame.flux.shape[0]): ok = np.where((frame.ivar[star] > 0) & (flat.fiberflat[star] != 0))[0] if ok.size > 0: frame.flux[star] = frame.flux[star] / flat.fiberflat[ star] - sky.flux[star] frame.resolution_data = frame.resolution_data[starindices] nstars = starindices.size starindices = None # we don't need this anymore # READ MODELS ############################################ log.info("reading star models in %s" % args.starmodels) stdwave, stdflux, templateid, teff, logg, feh = io.read_stdstar_templates( args.starmodels) # COMPUTE MAGS OF MODELS FOR EACH STD STAR MAG ############################################ model_filters = [] for tmp in np.unique(imaging_filters): if len(tmp) > 0: # can be one empty entry model_filters.append(tmp) log.info("computing model mags %s" % model_filters) model_mags = np.zeros((stdflux.shape[0], len(model_filters))) fluxunits = 1e-17 * units.erg / units.s / units.cm**2 / units.Angstrom for index in range(len(model_filters)): if model_filters[index].startswith('WISE'): log.warning('not computing stdstar {} mags'.format( model_filters[index])) continue filter_response = load_filter(model_filters[index]) for m in range(stdflux.shape[0]): model_mags[m, index] = filter_response.get_ab_magnitude( stdflux[m] * fluxunits, stdwave) log.info("done computing model mags") mean_extinction_delta_mags = None mean_ebv = np.mean(ebv) if mean_ebv > 0: log.info( "Compute a mean delta_color from average E(B-V) = %3.2f based on canonial model star" % mean_ebv) # compute a mean delta_color from mean_ebv based on canonial model star ####################################################################### # will then use this color offset in the model pre-selection # find canonical f-type model: Teff=6000, logg=4, Fe/H=-1.5 canonical_model = np.argmin((teff - 6000.0)**2 + (logg - 4.0)**2 + (feh + 1.5)**2) canonical_model_mags_without_extinction = model_mags[canonical_model] canonical_model_mags_with_extinction = np.zeros( canonical_model_mags_without_extinction.shape) canonical_model_reddened_flux = stdflux[ canonical_model] * dust_transmission(stdwave, mean_ebv) for index in range(len(model_filters)): if model_filters[index].startswith('WISE'): log.warning('not computing stdstar {} mags'.format( model_filters[index])) continue filter_response = load_filter(model_filters[index]) canonical_model_mags_with_extinction[ index] = filter_response.get_ab_magnitude( canonical_model_reddened_flux * fluxunits, stdwave) mean_extinction_delta_mags = canonical_model_mags_with_extinction - canonical_model_mags_without_extinction # LOOP ON STARS TO FIND BEST MODEL ############################################ linear_coefficients = np.zeros((nstars, stdflux.shape[0])) chi2dof = np.zeros((nstars)) redshift = np.zeros((nstars)) normflux = [] star_colors_array = np.zeros((nstars)) model_colors_array = np.zeros((nstars)) for star in range(nstars): log.info("finding best model for observed star #%d" % star) # np.array of wave,flux,ivar,resol wave = {} flux = {} ivar = {} resolution_data = {} for camera in frames: for i, frame in enumerate(frames[camera]): identifier = "%s-%d" % (camera, i) wave[identifier] = frame.wave flux[identifier] = frame.flux[star] ivar[identifier] = frame.ivar[star] resolution_data[identifier] = frame.resolution_data[star] # preselec models based on magnitudes # compute star color index1, index2 = get_color_filter_indices(imaging_filters[star], args.color) if index1 < 0 or index2 < 0: log.error("cannot compute '%s' color from %s" % (color_name, filters)) filter1 = imaging_filters[star][index1] filter2 = imaging_filters[star][index2] star_color = imaging_mags[star][index1] - imaging_mags[star][index2] star_colors_array[star] = star_color # compute models color model_index1 = -1 model_index2 = -1 for i, fname in enumerate(model_filters): if fname == filter1: model_index1 = i elif fname == filter2: model_index2 = i if model_index1 < 0 or model_index2 < 0: log.error("cannot compute '%s' model color from %s" % (color_name, filters)) model_colors = model_mags[:, model_index1] - model_mags[:, model_index2] # apply extinction here # use the colors derived from the cannonical model with the mean ebv of the stars # and simply apply a scaling factor based on the ebv of this star # this is sufficiently precise for the broad model pre-selection we are doing here # the exact reddening of the star to each pre-selected model is # apply afterwards if mean_extinction_delta_mags is not None and mean_ebv != 0: delta_color = (mean_extinction_delta_mags[model_index1] - mean_extinction_delta_mags[model_index2] ) * ebv[star] / mean_ebv model_colors += delta_color log.info( "Apply a %s-%s color offset = %4.3f to the models for star with E(B-V)=%4.3f" % (model_filters[model_index1], model_filters[model_index2], delta_color, ebv[star])) # selection selection = np.abs(model_colors - star_color) < args.delta_color # smallest cube in parameter space including this selection (needed for interpolation) new_selection = (teff >= np.min(teff[selection])) & (teff <= np.max( teff[selection])) new_selection &= (logg >= np.min(logg[selection])) & (logg <= np.max( logg[selection])) new_selection &= (feh >= np.min(feh[selection])) & (feh <= np.max( feh[selection])) selection = np.where(new_selection)[0] log.info( "star#%d fiber #%d, %s = %s-%s = %f, number of pre-selected models = %d/%d" % (star, starfibers[star], args.color, filter1, filter2, star_color, selection.size, stdflux.shape[0])) # apply extinction to selected_models dust_transmission_of_this_star = dust_transmission(stdwave, ebv[star]) selected_reddened_stdflux = stdflux[ selection] * dust_transmission_of_this_star coefficients, redshift[star], chi2dof[star] = match_templates( wave, flux, ivar, resolution_data, stdwave, selected_reddened_stdflux, teff[selection], logg[selection], feh[selection], ncpu=args.ncpu, z_max=args.z_max, z_res=args.z_res, template_error=args.template_error) linear_coefficients[star, selection] = coefficients log.info( 'Star Fiber: {0}; TEFF: {1}; LOGG: {2}; FEH: {3}; Redshift: {4}; Chisq/dof: {5}' .format(starfibers[star], np.inner(teff, linear_coefficients[star]), np.inner(logg, linear_coefficients[star]), np.inner(feh, linear_coefficients[star]), redshift[star], chi2dof[star])) # Apply redshift to original spectrum at full resolution model = np.zeros(stdwave.size) for i, c in enumerate(linear_coefficients[star]): if c != 0: model += c * np.interp(stdwave, stdwave * (1 + redshift[star]), stdflux[i]) # Apply dust extinction model *= dust_transmission_of_this_star # Compute final model color mag1 = load_filter(model_filters[model_index1]).get_ab_magnitude( model * fluxunits, stdwave) mag2 = load_filter(model_filters[model_index2]).get_ab_magnitude( model * fluxunits, stdwave) model_colors_array[star] = mag1 - mag2 # Normalize the best model using reported magnitude normalizedflux = normalize_templates(stdwave, model, imaging_mags[star], imaging_filters[star]) normflux.append(normalizedflux) # Now write the normalized flux for all best models to a file normflux = np.array(normflux) data = {} data['LOGG'] = linear_coefficients.dot(logg) data['TEFF'] = linear_coefficients.dot(teff) data['FEH'] = linear_coefficients.dot(feh) data['CHI2DOF'] = chi2dof data['REDSHIFT'] = redshift data['COEFF'] = linear_coefficients data['DATA_%s' % args.color] = star_colors_array data['MODEL_%s' % args.color] = model_colors_array norm_model_file = args.outfile io.write_stdstar_models(args.outfile, normflux, stdwave, starfibers, data)
def get_skyres(cframes, sub_sky=False, flatten=True): """ Args: cframes: str or list Single cframe or a list of them sub_sky: bool, optional Subtract the sky? This should probably not be done flatten: bool, optional Return a flat, 1D array for each variable combine: bool, optional combine the individual sky fibers? Median 'smash' Returns: wave : ndarray flux : ndarray res : ndarray ivar : ndarray """ from lvmspec.io import read_frame from lvmspec.io.sky import read_sky from lvmspec.sky import subtract_sky if isinstance(cframes, list): all_wave, all_flux, all_res, all_ivar = [], [], [], [] for cframe_file in cframes: wave, flux, res, ivar = get_skyres(cframe_file, flatten=flatten) # Save all_wave.append(wave) all_flux.append(flux) all_res.append(res) all_ivar.append(ivar) # Concatenate -- Shape is preserved (nfibers, npix) twave = np.concatenate(all_wave) tflux = np.concatenate(all_flux) tres = np.concatenate(all_res) tivar = np.concatenate(all_ivar) # Return return twave, tflux, tres, tivar cframe = read_frame(cframes) if cframe.meta['FLAVOR'] in ['flat', 'arc']: raise ValueError("Bad flavor for exposure: {:s}".format(cframes)) # Sky sky_file = cframes.replace('cframe', 'sky') skymodel = read_sky(sky_file) if sub_sky: subtract_sky(cframe, skymodel) # Resid skyfibers = np.where(cframe.fibermap['OBJTYPE'] == 'SKY')[0] res = cframe.flux[skyfibers] # Flux calibrated ivar = cframe.ivar[skyfibers] # Flux calibrated flux = skymodel.flux[skyfibers] # Residuals; not flux calibrated! wave = np.outer(np.ones(flux.shape[0]), cframe.wave) # Combine? ''' if combine: res = np.median(res, axis=0) ivar = np.median(ivar, axis=0) flux = np.median(flux, axis=0) wave = np.median(wave, axis=0) ''' # Return if flatten: return wave.flatten(), flux.flatten(), res.flatten(), ivar.flatten() else: return wave, flux, res, ivar
def qaframe_from_frame(frame_file, specprod_dir=None, make_plots=False, output_dir=None): """ Generate a qaframe object from an input frame_file name (and night) Write QA to disk Will also make plots if directed Args: frame_file: str specprod_dir: str, optional make_plots: bool, optional output_dir: str, optional Returns: """ import glob import os from lvmspec.io import read_frame from lvmspec.io import meta from lvmspec.io.qa import load_qa_frame, write_qa_frame from lvmspec.io.frame import search_for_framefile from lvmspec.io.fiberflat import read_fiberflat from lvmspec.fiberflat import apply_fiberflat from lvmspec.qa import qa_plots from lvmspec.io.sky import read_sky from lvmspec.io.fluxcalibration import read_flux_calibration if '/' in frame_file: # If present, assume full path is used here pass else: # Find the frame file in the lvmspec hierarchy? frame_file = search_for_framefile(frame_file) # Load frame frame = read_frame(frame_file) frame_meta = frame.meta night = frame_meta['NIGHT'].strip() camera = frame_meta['CAMERA'].strip() expid = frame_meta['EXPID'] spectro = int(frame_meta['CAMERA'][-1]) if frame_meta['FLAVOR'] in ['flat', 'arc']: qatype = 'qa_calib' else: qatype = 'qa_data' # Load qafile = meta.findfile(qatype, night=night, camera=camera, expid=expid, specprod_dir=specprod_dir, outdir=output_dir) qaframe = load_qa_frame(qafile, frame, flavor=frame.meta['FLAVOR']) # Flat QA if frame.meta['FLAVOR'] in ['flat']: fiberflat_fil = meta.findfile('fiberflat', night=night, camera=camera, expid=expid, specprod_dir=specprod_dir) fiberflat = read_fiberflat(fiberflat_fil) qaframe.run_qa('FIBERFLAT', (frame, fiberflat), clobber=True) if make_plots: # Do it qafig = meta.findfile('qa_flat_fig', night=night, camera=camera, expid=expid, specprod_dir=specprod_dir, outdir=output_dir) qa_plots.frame_fiberflat(qafig, qaframe, frame, fiberflat) # SkySub QA if qatype == 'qa_data': sky_fil = meta.findfile('sky', night=night, camera=camera, expid=expid, specprod_dir=specprod_dir) # Flat field first dummy_fiberflat_fil = meta.findfile( 'fiberflat', night=night, camera=camera, expid=expid, specprod_dir=specprod_dir) # This is dummy path, _ = os.path.split(dummy_fiberflat_fil) fiberflat_files = glob.glob( os.path.join(path, 'fiberflat-' + camera + '*.fits')) # Sort and take the first (same as current pipeline) fiberflat_files.sort() fiberflat = read_fiberflat(fiberflat_files[0]) apply_fiberflat(frame, fiberflat) # Load sky model and run try: skymodel = read_sky(sky_fil) except FileNotFoundError: warnings.warn( "Sky file {:s} not found. Skipping..".format(sky_fil)) else: qaframe.run_qa('SKYSUB', (frame, skymodel)) if make_plots: qafig = meta.findfile('qa_sky_fig', night=night, camera=camera, expid=expid, specprod_dir=specprod_dir, outdir=output_dir) qafig2 = meta.findfile('qa_skychi_fig', night=night, camera=camera, expid=expid, specprod_dir=specprod_dir, outdir=output_dir) qa_plots.frame_skyres(qafig, frame, skymodel, qaframe) #qa_plots.frame_skychi(qafig2, frame, skymodel, qaframe) # FluxCalib QA if qatype == 'qa_data': # Standard stars stdstar_fil = meta.findfile('stdstars', night=night, camera=camera, expid=expid, specprod_dir=specprod_dir, spectrograph=spectro) # try: # model_tuple=read_stdstar_models(stdstar_fil) # except FileNotFoundError: # warnings.warn("Standard star file {:s} not found. Skipping..".format(stdstar_fil)) # else: flux_fil = meta.findfile('calib', night=night, camera=camera, expid=expid, specprod_dir=specprod_dir) try: fluxcalib = read_flux_calibration(flux_fil) except FileNotFoundError: warnings.warn( "Flux file {:s} not found. Skipping..".format(flux_fil)) else: qaframe.run_qa( 'FLUXCALIB', (frame, fluxcalib)) # , model_tuple))#, indiv_stars)) if make_plots: qafig = meta.findfile('qa_flux_fig', night=night, camera=camera, expid=expid, specprod_dir=specprod_dir, outdir=output_dir) qa_plots.frame_fluxcalib(qafig, qaframe, frame, fluxcalib) # , model_tuple) # Write write_qa_frame(qafile, qaframe, verbose=True) return qaframe