Beispiel #1
0
def load_s2n_values(objtype, nights, channel, sub_exposures=None):
    fdict = dict(waves=[], s2n=[], fluxes=[], exptime=[], OII=[])
    for night in nights:
        if sub_exposures is not None:
            exposures = sub_exposures
        else:
            exposures = get_exposures(night)  #, raw=True)
        for exposure in exposures:
            fibermap_path = findfile(filetype='fibermap',
                                     night=night,
                                     expid=exposure)
            fibermap_data = read_fibermap(fibermap_path)
            flavor = fibermap_data.meta['FLAVOR']
            if flavor.lower() in ('arc', 'flat', 'bias'):
                log.debug('Skipping calibration {} exposure {:08d}'.format(
                    flavor, exposure))
                continue
            # Load simspec
            simspec_file = fibermap_path.replace('fibermap', 'simspec')
            sps_hdu = fits.open(simspec_file)
            sps_tab = Table(sps_hdu['TRUTH'].data, masked=True)
            sps_hdu.close()
            objs = sps_tab['TEMPLATETYPE'] == objtype
            if np.sum(objs) == 0:
                continue

            # Load spectra (flux or not fluxed; should not matter)
            for ii in range(10):
                camera = channel + str(ii)
                cframe_path = findfile(filetype='cframe',
                                       night=night,
                                       expid=exposure,
                                       camera=camera)
                try:
                    cframe = read_frame(cframe_path)
                except:
                    log.warn("Cannot find file: {:s}".format(cframe_path))
                    continue
                # Calculate S/N per Ang
                dwave = cframe.wave - np.roll(cframe.wave, 1)
                dwave[0] = dwave[1]
                #
                iobjs = objs[cframe.fibers]
                if np.sum(iobjs) == 0:
                    continue
                s2n = cframe.flux[iobjs, :] * np.sqrt(
                    cframe.ivar[iobjs, :]) / np.sqrt(dwave)
                # Save
                fdict['waves'].append(cframe.wave)
                fdict['s2n'].append(s2n)
                fdict['fluxes'].append(sps_tab['MAG'][cframe.fibers[iobjs]])
                if objtype == 'ELG':
                    fdict['OII'].append(
                        sps_tab['OIIFLUX'][cframe.fibers[iobjs]])
                fdict['exptime'].append(cframe.meta['EXPTIME'])
    # Return
    return fdict
Beispiel #2
0
def main(args):

    log = get_logger()

    if (args.fiberflat is None) and (args.sky is None) and (args.calib is None):
        log.critical('no --fiberflat, --sky, or --calib; nothing to do ?!?')
        sys.exit(12)

    frame = read_frame(args.infile)

    if args.cosmics_nsig>0 : # Reject cosmics
        reject_cosmic_rays_1d(frame,args.cosmics_nsig)

    if args.fiberflat!=None :
        log.info("apply fiberflat")
        # read fiberflat
        fiberflat = read_fiberflat(args.fiberflat)

        # apply fiberflat to sky fibers
        apply_fiberflat(frame, fiberflat)

    if args.sky!=None :
        log.info("subtract sky")
        # read sky
        skymodel=read_sky(args.sky)
        # subtract sky
        subtract_sky(frame, skymodel)

    if args.calib!=None :
        log.info("calibrate")
        # read calibration
        fluxcalib=read_flux_calibration(args.calib)
        # apply calibration
        apply_flux_calibration(frame, fluxcalib)

    if args.cosmics_nsig>0 : # Reject cosmics one more time after sky subtraction to catch cosmics close to sky lines
        reject_cosmic_rays_1d(frame,args.cosmics_nsig)

    # save output
    write_frame(args.outfile, frame, units='1e-17 erg/(s cm2 A)')

    log.info("successfully wrote %s"%args.outfile)
Beispiel #3
0
def main(args) :

    log=get_logger()

    log.info("starting")

    # read exposure to load data and get range of spectra
    frame = read_frame(args.infile)
    specmin, specmax = np.min(frame.fibers), np.max(frame.fibers)

    if args.cosmics_nsig>0 : # Reject cosmics
        reject_cosmic_rays_1d(frame,args.cosmics_nsig)

    # read fiberflat
    fiberflat = read_fiberflat(args.fiberflat)

    # apply fiberflat to sky fibers
    apply_fiberflat(frame, fiberflat)

    # compute sky model
    skymodel = compute_sky(frame,add_variance=(not args.no_extra_variance))

    # QA
    if (args.qafile is not None) or (args.qafig is not None):
        log.info("performing skysub QA")
        # Load
        qaframe = load_qa_frame(args.qafile, frame, flavor=frame.meta['FLAVOR'])
        # Run
        qaframe.run_qa('SKYSUB', (frame, skymodel))
        # Write
        if args.qafile is not None:
            write_qa_frame(args.qafile, qaframe)
            log.info("successfully wrote {:s}".format(args.qafile))
        # Figure(s)
        if args.qafig is not None:
            qa_plots.frame_skyres(args.qafig, frame, skymodel, qaframe)

    # write result
    write_sky(args.outfile, skymodel, frame.meta)
    log.info("successfully wrote %s"%args.outfile)
Beispiel #4
0
def main(args):

    log = get_logger()
    log.info("starting at {}".format(time.asctime()))

    # Process
    frame = read_frame(args.infile)

    if args.cosmics_nsig > 0:  # Reject cosmics
        reject_cosmic_rays_1d(frame, args.cosmics_nsig)

    fiberflat = compute_fiberflat(frame,
                                  nsig_clipping=args.nsig,
                                  accuracy=args.acc,
                                  smoothing_res=args.smoothing_resolution)

    # QA
    if (args.qafile is not None):
        log.info("performing fiberflat QA")
        # Load
        qaframe = load_qa_frame(args.qafile,
                                frame,
                                flavor=frame.meta['FLAVOR'])
        # Run
        qaframe.run_qa('FIBERFLAT', (frame, fiberflat))
        # Write
        if args.qafile is not None:
            write_qa_frame(args.qafile, qaframe)
            log.info("successfully wrote {:s}".format(args.qafile))
        # Figure(s)
        if args.qafig is not None:
            qa_plots.frame_fiberflat(args.qafig, qaframe, frame, fiberflat)

    # Write
    write_fiberflat(args.outfile, fiberflat, frame.meta)
    log.info("successfully wrote %s" % args.outfile)
    log.info("done at {}".format(time.asctime()))
Beispiel #5
0
def main(args):

    log = get_logger()

    log.info("read frame")
    # read frame
    frame = read_frame(args.infile)

    log.info("apply fiberflat")
    # read fiberflat
    fiberflat = read_fiberflat(args.fiberflat)

    # apply fiberflat
    apply_fiberflat(frame, fiberflat)

    log.info("subtract sky")
    # read sky
    skymodel = read_sky(args.sky)

    # subtract sky
    subtract_sky(frame, skymodel)

    log.info("compute flux calibration")

    # read models
    model_flux, model_wave, model_fibers, model_metadata = read_stdstar_models(
        args.models)

    if args.chi2cut > 0:
        ok = np.where(model_metadata["CHI2DOF"] < args.chi2cut)[0]
        if ok.size == 0:
            log.error("chi2cut has discarded all stars")
            sys.exit(12)
        nstars = model_flux.shape[0]
        nbad = nstars - ok.size
        if nbad > 0:
            log.warning("discarding %d star(s) out of %d because of chi2cut" %
                        (nbad, nstars))
            model_flux = model_flux[ok]
            model_fibers = model_fibers[ok]
            model_metadata = model_metadata[:][ok]

    if args.delta_color_cut > 0:
        ok = np.where(
            np.abs(model_metadata["MODEL_G-R"] -
                   model_metadata["DATA_G-R"]) < args.delta_color_cut)[0]
        nstars = model_flux.shape[0]
        nbad = nstars - ok.size
        if nbad > 0:
            log.warning(
                "discarding %d star(s) out of %d because |delta_color|>%f" %
                (nbad, nstars, args.delta_color_cut))
            model_flux = model_flux[ok]
            model_fibers = model_fibers[ok]
            model_metadata = model_metadata[:][ok]

    # automatically reject stars that ar chi2 outliers
    if args.chi2cut_nsig > 0:
        mchi2 = np.median(model_metadata["CHI2DOF"])
        rmschi2 = np.std(model_metadata["CHI2DOF"])
        maxchi2 = mchi2 + args.chi2cut_nsig * rmschi2
        ok = np.where(model_metadata["CHI2DOF"] <= maxchi2)[0]
        nstars = model_flux.shape[0]
        nbad = nstars - ok.size
        if nbad > 0:
            log.warning(
                "discarding %d star(s) out of %d because reduced chi2 outliers (at %d sigma, giving rchi2<%f )"
                % (nbad, nstars, args.chi2cut_nsig, maxchi2))
            model_flux = model_flux[ok]
            model_fibers = model_fibers[ok]
            model_metadata = model_metadata[:][ok]

    # check that the model_fibers are actually standard stars
    fibermap = frame.fibermap

    ## check whether star fibers from args.models are consistent with fibers from fibermap
    ## if not print the OBJTYPE from fibermap for the fibers numbers in args.models and exit
    w = np.where(fibermap["OBJTYPE"][model_fibers % 500] != 'STD')[0]

    if len(w) > 0:
        for i in model_fibers % 500:
            log.error(
                "inconsistency with spectrum %d, OBJTYPE='%s' in fibermap" %
                (i, fibermap["OBJTYPE"][i]))
        sys.exit(12)

    fluxcalib = compute_flux_calibration(frame, model_wave, model_flux,
                                         model_fibers % 500)

    # QA
    if (args.qafile is not None):
        log.info("performing fluxcalib QA")
        # Load
        qaframe = load_qa_frame(args.qafile,
                                frame,
                                flavor=frame.meta['FLAVOR'])
        # Run
        #import pdb; pdb.set_trace()
        qaframe.run_qa('FLUXCALIB', (frame, fluxcalib))
        # Write
        if args.qafile is not None:
            write_qa_frame(args.qafile, qaframe)
            log.info("successfully wrote {:s}".format(args.qafile))
        # Figure(s)
        if args.qafig is not None:
            qa_plots.frame_fluxcalib(args.qafig, qaframe, frame, fluxcalib)

    # write result
    write_flux_calibration(args.outfile, fluxcalib, header=frame.meta)

    log.info("successfully wrote %s" % args.outfile)
Beispiel #6
0
def main(args):
    """ finds the best models of all standard stars in the frame
    and normlize the model flux. Output is written to a file and will be called for calibration.
    """

    log = get_logger()

    log.info("mag delta %s = %f (for the pre-selection of stellar models)" %
             (args.color, args.delta_color))

    frames = {}
    flats = {}
    skies = {}

    spectrograph = None
    starfibers = None
    starindices = None
    fibermap = None

    # READ DATA
    ############################################

    for filename in args.frames:

        log.info("reading %s" % filename)
        frame = io.read_frame(filename)
        header = fits.getheader(filename, 0)
        frame_fibermap = frame.fibermap
        frame_starindices = np.where(frame_fibermap["OBJTYPE"] == "STD")[0]

        # check magnitude are well defined or discard stars
        tmp = []
        for i in frame_starindices:
            mags = frame_fibermap["MAG"][i]
            ok = np.sum((mags > 0) & (mags < 30))
            if np.sum((mags > 0) & (mags < 30)) == mags.size:
                tmp.append(i)
        frame_starindices = np.array(tmp).astype(int)

        camera = safe_read_key(header, "CAMERA").strip().lower()

        if spectrograph is None:
            spectrograph = frame.spectrograph
            fibermap = frame_fibermap
            starindices = frame_starindices
            starfibers = fibermap["FIBER"][starindices]

        elif spectrograph != frame.spectrograph:
            log.error("incompatible spectrographs %d != %d" %
                      (spectrograph, frame.spectrograph))
            raise ValueError("incompatible spectrographs %d != %d" %
                             (spectrograph, frame.spectrograph))
        elif starindices.size != frame_starindices.size or np.sum(
                starindices != frame_starindices) > 0:
            log.error("incompatible fibermap")
            raise ValueError("incompatible fibermap")

        if not camera in frames:
            frames[camera] = []
        frames[camera].append(frame)

    for filename in args.skymodels:
        log.info("reading %s" % filename)
        sky = io.read_sky(filename)
        header = fits.getheader(filename, 0)
        camera = safe_read_key(header, "CAMERA").strip().lower()
        if not camera in skies:
            skies[camera] = []
        skies[camera].append(sky)

    for filename in args.fiberflats:
        log.info("reading %s" % filename)
        header = fits.getheader(filename, 0)
        flat = io.read_fiberflat(filename)
        camera = safe_read_key(header, "CAMERA").strip().lower()

        # NEED TO ADD MORE CHECKS
        if camera in flats:

            log.warning(
                "cannot handle several flats of same camera (%s), will use only the first one"
                % camera)
            #raise ValueError("cannot handle several flats of same camera (%s)"%camera)
        else:
            flats[camera] = flat

    if starindices.size == 0:
        log.error("no STD star found in fibermap")
        raise ValueError("no STD star found in fibermap")

    log.info("found %d STD stars" % starindices.size)

    imaging_filters = fibermap["FILTER"][starindices]
    imaging_mags = fibermap["MAG"][starindices]

    log.warning(
        "NO MAG ERRORS IN FIBERMAP, I AM IGNORING MEASUREMENT ERRORS !!")

    ebv = np.zeros(starindices.size)
    if "SFD_EBV" in fibermap.columns.names:
        log.info("Using 'SFD_EBV' from fibermap")
        ebv = fibermap["SFD_EBV"][starindices]
    else:
        log.warning("NO EXTINCTION VALUES IN FIBERMAP!!")

    # DIVIDE FLAT AND SUBTRACT SKY , TRIM DATA
    ############################################
    for cam in frames:

        if not cam in skies:
            log.warning("Missing sky for %s" % cam)
            frames.pop(cam)
            continue
        if not cam in flats:
            log.warning("Missing flat for %s" % cam)
            frames.pop(cam)
            continue

        flat = flats[cam]
        for frame, sky in zip(frames[cam], skies[cam]):
            frame.flux = frame.flux[starindices]
            frame.ivar = frame.ivar[starindices]
            frame.ivar *= (frame.mask[starindices] == 0)
            frame.ivar *= (sky.ivar[starindices] != 0)
            frame.ivar *= (sky.mask[starindices] == 0)
            frame.ivar *= (flat.ivar[starindices] != 0)
            frame.ivar *= (flat.mask[starindices] == 0)
            frame.flux *= (frame.ivar > 0)  # just for clean plots
            for star in range(frame.flux.shape[0]):
                ok = np.where((frame.ivar[star] > 0)
                              & (flat.fiberflat[star] != 0))[0]
                if ok.size > 0:
                    frame.flux[star] = frame.flux[star] / flat.fiberflat[
                        star] - sky.flux[star]
            frame.resolution_data = frame.resolution_data[starindices]

    nstars = starindices.size
    starindices = None  # we don't need this anymore

    # READ MODELS
    ############################################
    log.info("reading star models in %s" % args.starmodels)
    stdwave, stdflux, templateid, teff, logg, feh = io.read_stdstar_templates(
        args.starmodels)

    # COMPUTE MAGS OF MODELS FOR EACH STD STAR MAG
    ############################################
    model_filters = []
    for tmp in np.unique(imaging_filters):
        if len(tmp) > 0:  # can be one empty entry
            model_filters.append(tmp)

    log.info("computing model mags %s" % model_filters)
    model_mags = np.zeros((stdflux.shape[0], len(model_filters)))
    fluxunits = 1e-17 * units.erg / units.s / units.cm**2 / units.Angstrom

    for index in range(len(model_filters)):
        if model_filters[index].startswith('WISE'):
            log.warning('not computing stdstar {} mags'.format(
                model_filters[index]))
            continue

        filter_response = load_filter(model_filters[index])
        for m in range(stdflux.shape[0]):
            model_mags[m, index] = filter_response.get_ab_magnitude(
                stdflux[m] * fluxunits, stdwave)
    log.info("done computing model mags")

    mean_extinction_delta_mags = None
    mean_ebv = np.mean(ebv)
    if mean_ebv > 0:
        log.info(
            "Compute a mean delta_color from average E(B-V) = %3.2f based on canonial model star"
            % mean_ebv)
        # compute a mean delta_color from mean_ebv based on canonial model star
        #######################################################################
        # will then use this color offset in the model pre-selection
        # find canonical f-type model: Teff=6000, logg=4, Fe/H=-1.5
        canonical_model = np.argmin((teff - 6000.0)**2 + (logg - 4.0)**2 +
                                    (feh + 1.5)**2)
        canonical_model_mags_without_extinction = model_mags[canonical_model]
        canonical_model_mags_with_extinction = np.zeros(
            canonical_model_mags_without_extinction.shape)

        canonical_model_reddened_flux = stdflux[
            canonical_model] * dust_transmission(stdwave, mean_ebv)
        for index in range(len(model_filters)):
            if model_filters[index].startswith('WISE'):
                log.warning('not computing stdstar {} mags'.format(
                    model_filters[index]))
                continue
            filter_response = load_filter(model_filters[index])
            canonical_model_mags_with_extinction[
                index] = filter_response.get_ab_magnitude(
                    canonical_model_reddened_flux * fluxunits, stdwave)

        mean_extinction_delta_mags = canonical_model_mags_with_extinction - canonical_model_mags_without_extinction

    # LOOP ON STARS TO FIND BEST MODEL
    ############################################
    linear_coefficients = np.zeros((nstars, stdflux.shape[0]))
    chi2dof = np.zeros((nstars))
    redshift = np.zeros((nstars))
    normflux = []

    star_colors_array = np.zeros((nstars))
    model_colors_array = np.zeros((nstars))

    for star in range(nstars):

        log.info("finding best model for observed star #%d" % star)

        # np.array of wave,flux,ivar,resol
        wave = {}
        flux = {}
        ivar = {}
        resolution_data = {}
        for camera in frames:

            for i, frame in enumerate(frames[camera]):
                identifier = "%s-%d" % (camera, i)
                wave[identifier] = frame.wave
                flux[identifier] = frame.flux[star]
                ivar[identifier] = frame.ivar[star]
                resolution_data[identifier] = frame.resolution_data[star]

        # preselec models based on magnitudes

        # compute star color
        index1, index2 = get_color_filter_indices(imaging_filters[star],
                                                  args.color)
        if index1 < 0 or index2 < 0:
            log.error("cannot compute '%s' color from %s" %
                      (color_name, filters))
        filter1 = imaging_filters[star][index1]
        filter2 = imaging_filters[star][index2]
        star_color = imaging_mags[star][index1] - imaging_mags[star][index2]
        star_colors_array[star] = star_color

        # compute models color
        model_index1 = -1
        model_index2 = -1
        for i, fname in enumerate(model_filters):
            if fname == filter1:
                model_index1 = i
            elif fname == filter2:
                model_index2 = i

        if model_index1 < 0 or model_index2 < 0:
            log.error("cannot compute '%s' model color from %s" %
                      (color_name, filters))
        model_colors = model_mags[:, model_index1] - model_mags[:,
                                                                model_index2]

        # apply extinction here
        # use the colors derived from the cannonical model with the mean ebv of the stars
        # and simply apply a scaling factor based on the ebv of this star
        # this is sufficiently precise for the broad model pre-selection we are doing here
        # the exact reddening of the star to each pre-selected model is
        # apply afterwards
        if mean_extinction_delta_mags is not None and mean_ebv != 0:
            delta_color = (mean_extinction_delta_mags[model_index1] -
                           mean_extinction_delta_mags[model_index2]
                           ) * ebv[star] / mean_ebv
            model_colors += delta_color
            log.info(
                "Apply a %s-%s color offset = %4.3f to the models for star with E(B-V)=%4.3f"
                % (model_filters[model_index1], model_filters[model_index2],
                   delta_color, ebv[star]))
        # selection

        selection = np.abs(model_colors - star_color) < args.delta_color
        # smallest cube in parameter space including this selection (needed for interpolation)
        new_selection = (teff >= np.min(teff[selection])) & (teff <= np.max(
            teff[selection]))
        new_selection &= (logg >= np.min(logg[selection])) & (logg <= np.max(
            logg[selection]))
        new_selection &= (feh >= np.min(feh[selection])) & (feh <= np.max(
            feh[selection]))
        selection = np.where(new_selection)[0]

        log.info(
            "star#%d fiber #%d, %s = %s-%s = %f, number of pre-selected models = %d/%d"
            % (star, starfibers[star], args.color, filter1, filter2,
               star_color, selection.size, stdflux.shape[0]))

        # apply extinction to selected_models
        dust_transmission_of_this_star = dust_transmission(stdwave, ebv[star])
        selected_reddened_stdflux = stdflux[
            selection] * dust_transmission_of_this_star

        coefficients, redshift[star], chi2dof[star] = match_templates(
            wave,
            flux,
            ivar,
            resolution_data,
            stdwave,
            selected_reddened_stdflux,
            teff[selection],
            logg[selection],
            feh[selection],
            ncpu=args.ncpu,
            z_max=args.z_max,
            z_res=args.z_res,
            template_error=args.template_error)

        linear_coefficients[star, selection] = coefficients

        log.info(
            'Star Fiber: {0}; TEFF: {1}; LOGG: {2}; FEH: {3}; Redshift: {4}; Chisq/dof: {5}'
            .format(starfibers[star], np.inner(teff,
                                               linear_coefficients[star]),
                    np.inner(logg, linear_coefficients[star]),
                    np.inner(feh, linear_coefficients[star]), redshift[star],
                    chi2dof[star]))

        # Apply redshift to original spectrum at full resolution
        model = np.zeros(stdwave.size)
        for i, c in enumerate(linear_coefficients[star]):
            if c != 0:
                model += c * np.interp(stdwave, stdwave *
                                       (1 + redshift[star]), stdflux[i])

        # Apply dust extinction
        model *= dust_transmission_of_this_star

        # Compute final model color
        mag1 = load_filter(model_filters[model_index1]).get_ab_magnitude(
            model * fluxunits, stdwave)
        mag2 = load_filter(model_filters[model_index2]).get_ab_magnitude(
            model * fluxunits, stdwave)
        model_colors_array[star] = mag1 - mag2

        # Normalize the best model using reported magnitude
        normalizedflux = normalize_templates(stdwave, model,
                                             imaging_mags[star],
                                             imaging_filters[star])
        normflux.append(normalizedflux)

    # Now write the normalized flux for all best models to a file
    normflux = np.array(normflux)
    data = {}
    data['LOGG'] = linear_coefficients.dot(logg)
    data['TEFF'] = linear_coefficients.dot(teff)
    data['FEH'] = linear_coefficients.dot(feh)
    data['CHI2DOF'] = chi2dof
    data['REDSHIFT'] = redshift
    data['COEFF'] = linear_coefficients
    data['DATA_%s' % args.color] = star_colors_array
    data['MODEL_%s' % args.color] = model_colors_array
    norm_model_file = args.outfile
    io.write_stdstar_models(args.outfile, normflux, stdwave, starfibers, data)
Beispiel #7
0
def get_skyres(cframes, sub_sky=False, flatten=True):
    """
    Args:
        cframes: str or list
          Single cframe or a list of them
        sub_sky: bool, optional
          Subtract the sky?  This should probably not be done
        flatten: bool, optional
          Return a flat, 1D array for each variable
        combine: bool, optional
          combine the individual sky fibers?  Median 'smash'

    Returns:
        wave : ndarray
        flux : ndarray
        res : ndarray
        ivar : ndarray

    """
    from lvmspec.io import read_frame
    from lvmspec.io.sky import read_sky
    from lvmspec.sky import subtract_sky

    if isinstance(cframes, list):
        all_wave, all_flux, all_res, all_ivar = [], [], [], []
        for cframe_file in cframes:
            wave, flux, res, ivar = get_skyres(cframe_file, flatten=flatten)
            # Save
            all_wave.append(wave)
            all_flux.append(flux)
            all_res.append(res)
            all_ivar.append(ivar)
        # Concatenate -- Shape is preserved (nfibers, npix)
        twave = np.concatenate(all_wave)
        tflux = np.concatenate(all_flux)
        tres = np.concatenate(all_res)
        tivar = np.concatenate(all_ivar)
        # Return
        return twave, tflux, tres, tivar

    cframe = read_frame(cframes)
    if cframe.meta['FLAVOR'] in ['flat', 'arc']:
        raise ValueError("Bad flavor for exposure: {:s}".format(cframes))

    # Sky
    sky_file = cframes.replace('cframe', 'sky')
    skymodel = read_sky(sky_file)
    if sub_sky:
        subtract_sky(cframe, skymodel)
    # Resid
    skyfibers = np.where(cframe.fibermap['OBJTYPE'] == 'SKY')[0]
    res = cframe.flux[skyfibers]  # Flux calibrated
    ivar = cframe.ivar[skyfibers]  # Flux calibrated
    flux = skymodel.flux[skyfibers]  # Residuals; not flux calibrated!
    wave = np.outer(np.ones(flux.shape[0]), cframe.wave)
    # Combine?
    '''
    if combine:
        res = np.median(res, axis=0)
        ivar = np.median(ivar, axis=0)
        flux = np.median(flux, axis=0)
        wave = np.median(wave, axis=0)
    '''
    # Return
    if flatten:
        return wave.flatten(), flux.flatten(), res.flatten(), ivar.flatten()
    else:
        return wave, flux, res, ivar
Beispiel #8
0
def qaframe_from_frame(frame_file,
                       specprod_dir=None,
                       make_plots=False,
                       output_dir=None):
    """  Generate a qaframe object from an input frame_file name (and night)
    Write QA to disk
    Will also make plots if directed
    Args:
        frame_file: str
        specprod_dir: str, optional
        make_plots: bool, optional
        output_dir: str, optional

    Returns:

    """
    import glob
    import os

    from lvmspec.io import read_frame
    from lvmspec.io import meta
    from lvmspec.io.qa import load_qa_frame, write_qa_frame
    from lvmspec.io.frame import search_for_framefile
    from lvmspec.io.fiberflat import read_fiberflat
    from lvmspec.fiberflat import apply_fiberflat
    from lvmspec.qa import qa_plots
    from lvmspec.io.sky import read_sky
    from lvmspec.io.fluxcalibration import read_flux_calibration

    if '/' in frame_file:  # If present, assume full path is used here
        pass
    else:  # Find the frame file in the lvmspec hierarchy?
        frame_file = search_for_framefile(frame_file)
    # Load frame
    frame = read_frame(frame_file)
    frame_meta = frame.meta
    night = frame_meta['NIGHT'].strip()
    camera = frame_meta['CAMERA'].strip()
    expid = frame_meta['EXPID']
    spectro = int(frame_meta['CAMERA'][-1])
    if frame_meta['FLAVOR'] in ['flat', 'arc']:
        qatype = 'qa_calib'
    else:
        qatype = 'qa_data'
    # Load
    qafile = meta.findfile(qatype,
                           night=night,
                           camera=camera,
                           expid=expid,
                           specprod_dir=specprod_dir,
                           outdir=output_dir)
    qaframe = load_qa_frame(qafile, frame, flavor=frame.meta['FLAVOR'])
    # Flat QA
    if frame.meta['FLAVOR'] in ['flat']:
        fiberflat_fil = meta.findfile('fiberflat',
                                      night=night,
                                      camera=camera,
                                      expid=expid,
                                      specprod_dir=specprod_dir)
        fiberflat = read_fiberflat(fiberflat_fil)
        qaframe.run_qa('FIBERFLAT', (frame, fiberflat), clobber=True)
        if make_plots:
            # Do it
            qafig = meta.findfile('qa_flat_fig',
                                  night=night,
                                  camera=camera,
                                  expid=expid,
                                  specprod_dir=specprod_dir,
                                  outdir=output_dir)
            qa_plots.frame_fiberflat(qafig, qaframe, frame, fiberflat)
    # SkySub QA
    if qatype == 'qa_data':
        sky_fil = meta.findfile('sky',
                                night=night,
                                camera=camera,
                                expid=expid,
                                specprod_dir=specprod_dir)
        # Flat field first
        dummy_fiberflat_fil = meta.findfile(
            'fiberflat',
            night=night,
            camera=camera,
            expid=expid,
            specprod_dir=specprod_dir)  # This is dummy
        path, _ = os.path.split(dummy_fiberflat_fil)
        fiberflat_files = glob.glob(
            os.path.join(path, 'fiberflat-' + camera + '*.fits'))
        # Sort and take the first (same as current pipeline)
        fiberflat_files.sort()
        fiberflat = read_fiberflat(fiberflat_files[0])
        apply_fiberflat(frame, fiberflat)
        # Load sky model and run
        try:
            skymodel = read_sky(sky_fil)
        except FileNotFoundError:
            warnings.warn(
                "Sky file {:s} not found.  Skipping..".format(sky_fil))
        else:
            qaframe.run_qa('SKYSUB', (frame, skymodel))
            if make_plots:
                qafig = meta.findfile('qa_sky_fig',
                                      night=night,
                                      camera=camera,
                                      expid=expid,
                                      specprod_dir=specprod_dir,
                                      outdir=output_dir)
                qafig2 = meta.findfile('qa_skychi_fig',
                                       night=night,
                                       camera=camera,
                                       expid=expid,
                                       specprod_dir=specprod_dir,
                                       outdir=output_dir)
                qa_plots.frame_skyres(qafig, frame, skymodel, qaframe)
                #qa_plots.frame_skychi(qafig2, frame, skymodel, qaframe)
    # FluxCalib QA
    if qatype == 'qa_data':
        # Standard stars
        stdstar_fil = meta.findfile('stdstars',
                                    night=night,
                                    camera=camera,
                                    expid=expid,
                                    specprod_dir=specprod_dir,
                                    spectrograph=spectro)
        # try:
        #    model_tuple=read_stdstar_models(stdstar_fil)
        # except FileNotFoundError:
        #    warnings.warn("Standard star file {:s} not found.  Skipping..".format(stdstar_fil))
        # else:
        flux_fil = meta.findfile('calib',
                                 night=night,
                                 camera=camera,
                                 expid=expid,
                                 specprod_dir=specprod_dir)
        try:
            fluxcalib = read_flux_calibration(flux_fil)
        except FileNotFoundError:
            warnings.warn(
                "Flux file {:s} not found.  Skipping..".format(flux_fil))
        else:
            qaframe.run_qa(
                'FLUXCALIB',
                (frame, fluxcalib))  # , model_tuple))#, indiv_stars))
            if make_plots:
                qafig = meta.findfile('qa_flux_fig',
                                      night=night,
                                      camera=camera,
                                      expid=expid,
                                      specprod_dir=specprod_dir,
                                      outdir=output_dir)
                qa_plots.frame_fluxcalib(qafig, qaframe, frame,
                                         fluxcalib)  # , model_tuple)
    # Write
    write_qa_frame(qafile, qaframe, verbose=True)
    return qaframe