Beispiel #1
0
def test_pipeline_methods_preprocessing_svm():
    # Test the various methods of the pipeline (preprocessing + svm).
    iris = load_iris()
    X = iris.data
    y = iris.target
    n_samples = X.shape[0]
    n_classes = len(np.unique(y))
    scaler = StandardScaler()
    pca = PCA(n_components=2, svd_solver='randomized', whiten=True)
    clf = SVC(probability=True, random_state=0, decision_function_shape='ovr')

    for preprocessing in [scaler, pca]:
        pipe = Pipeline([('preprocess', preprocessing), ('svc', clf)])
        pipe.fit(X, y)

        # check shapes of various prediction functions
        predict = pipe.predict(X)
        assert predict.shape == (n_samples,)

        proba = pipe.predict_proba(X)
        assert proba.shape == (n_samples, n_classes)

        log_proba = pipe.predict_log_proba(X)
        assert log_proba.shape == (n_samples, n_classes)

        decision_function = pipe.decision_function(X)
        assert decision_function.shape == (n_samples, n_classes)

        pipe.score(X, y)
Beispiel #2
0
def test_fit_predict_with_intermediate_fit_params():
    # tests that Pipeline passes fit_params to intermediate steps
    # when fit_predict is invoked
    pipe = Pipeline([('transf', TransfFitParams()), ('clf', FitParamT())])
    pipe.fit_predict(X=None,
                     y=None,
                     transf__should_get_this=True,
                     clf__should_succeed=True)
    assert pipe.named_steps['transf'].fit_params['should_get_this']
    assert pipe.named_steps['clf'].successful
    assert 'should_succeed' not in pipe.named_steps['transf'].fit_params
Beispiel #3
0
def test_pipeline_fit_transform():
    # Test whether pipeline works with a transformer missing fit_transform
    iris = load_iris()
    X = iris.data
    y = iris.target
    transf = Transf()
    pipeline = Pipeline([('mock', transf)])

    # test fit_transform:
    X_trans = pipeline.fit_transform(X, y)
    X_trans2 = transf.fit(X, y).transform(X)
    assert_array_almost_equal(X_trans, X_trans2)
Beispiel #4
0
def test_pipeline_wrong_memory():
    # Test that an error is raised when memory is not a string or a Memory
    # instance
    iris = load_iris()
    X = iris.data
    y = iris.target
    # Define memory as an integer
    memory = 1
    cached_pipe = Pipeline([('transf', DummyTransf()), ('svc', SVC())],
                           memory=memory)
    error_regex = ("'memory' should either be a string or a joblib.Memory"
                   " instance, got 'memory=1' instead.")
    with raises(ValueError, match=error_regex):
        cached_pipe.fit(X, y)
Beispiel #5
0
    def _validate_estimator(self, default=DecisionTreeClassifier()):
        """
        Check the estimator and the n_estimator attribute, set the
        'base_estimator_' attribute.

        :param default: classifier object used if base_estimator=None
        :return:
        """
        """"""
        if not isinstance(self.n_estimators, (numbers.Integral, np.integer)):
            raise ValueError("n_estimators must be an integer, "
                             "got {0}.".format(type(self.n_estimators)))

        if self.n_estimators <= 0:
            raise ValueError("n_estimators must be greater than zero, "
                             "got {0}.".format(self.n_estimators))

        if self.base_estimator is not None:
            base_estimator = clone(self.base_estimator)
        else:
            base_estimator = clone(default)

        if isinstance(self.ratio, dict) and self.ratio != {}:
            raise ValueError(
                "'dict' type cannot be accepted for ratio in this class; "
                "use alternative options")

        self.base_estimator_ = Pipeline([
            ('sampler',
             SMOTE(ratio=self.ratio,
                   k_neighbors=self.k_neighbors,
                   random_state=self.random_state)),
            ('classifier', base_estimator)
        ])
Beispiel #6
0
def test_pipeline_sample_weight_supported():
    # Pipeline should pass sample_weight
    X = np.array([[1, 2]])
    pipe = Pipeline([('transf', Transf()), ('clf', FitParamT())])
    pipe.fit(X, y=None)
    assert pipe.score(X) == 3
    assert pipe.score(X, y=None) == 3
    assert pipe.score(X, y=None, sample_weight=None) == 3
    assert pipe.score(X, sample_weight=np.array([2, 3])) == 8
Beispiel #7
0
def test_pipeline_sample_weight_unsupported():
    # When sample_weight is None it shouldn't be passed
    X = np.array([[1, 2]])
    pipe = Pipeline([('transf', Transf()), ('clf', Mult())])
    pipe.fit(X, y=None)
    assert pipe.score(X) == 3
    assert pipe.score(X, sample_weight=None) == 3
    with raises(TypeError, match="unexpected keyword argument"):
        pipe.score(X, sample_weight=np.array([2, 3]))
Beispiel #8
0
def test_pipeline_transform():
    # Test whether pipeline works with a transformer at the end.
    # Also test pipeline.transform and pipeline.inverse_transform
    iris = load_iris()
    X = iris.data
    pca = PCA(n_components=2, svd_solver='full')
    pipeline = Pipeline([('pca', pca)])

    # test transform and fit_transform:
    X_trans = pipeline.fit(X).transform(X)
    X_trans2 = pipeline.fit_transform(X)
    X_trans3 = pca.fit_transform(X)
    assert_array_almost_equal(X_trans, X_trans2)
    assert_array_almost_equal(X_trans, X_trans3)

    X_back = pipeline.inverse_transform(X_trans)
    X_back2 = pca.inverse_transform(X_trans)
    assert_array_almost_equal(X_back, X_back2)
Beispiel #9
0
def test_fit_predict_on_pipeline_without_fit_predict():
    # tests that a pipeline does not have fit_predict method when final
    # step of pipeline does not have fit_predict defined
    scaler = StandardScaler()
    pca = PCA(svd_solver='full')
    pipe = Pipeline([('scaler', scaler), ('pca', pca)])
    error_regex = "'PCA' object has no attribute 'fit_predict'"
    with raises(AttributeError, match=error_regex):
        getattr(pipe, 'fit_predict')
Beispiel #10
0
def test_pipeline_with_step_that_it_is_pipeline():
    # Test the various methods of the pipeline (anova).
    X, y = make_classification(
        n_classes=2,
        class_sep=2,
        weights=[0.1, 0.9],
        n_informative=3,
        n_redundant=1,
        flip_y=0,
        n_features=20,
        n_clusters_per_class=1,
        n_samples=5000,
        random_state=0)
    # Test with RandomUnderSampling + Anova + LogisticRegression
    clf = LogisticRegression()
    rus = RandomUnderSampler(random_state=0)
    filter1 = SelectKBest(f_classif, k=2)
    pipe1 = Pipeline([('rus', rus), ('anova', filter1)])
    with raises(TypeError):
        Pipeline([('pipe1', pipe1), ('logistic', clf)])
Beispiel #11
0
def test_pipeline_sample_transform():
    # Test whether pipeline works with a sampler at the end.
    # Also test pipeline.sampler
    X, y = make_classification(
        n_classes=2,
        class_sep=2,
        weights=[0.1, 0.9],
        n_informative=3,
        n_redundant=1,
        flip_y=0,
        n_features=20,
        n_clusters_per_class=1,
        n_samples=5000,
        random_state=0)

    rus = RandomUnderSampler(random_state=0)
    pca = PCA()
    pca2 = PCA()
    pipeline = Pipeline([('pca', pca), ('rus', rus), ('pca2', pca2)])

    pipeline.fit(X, y).transform(X)
Beispiel #12
0
def test_pipeline_fit_params():
    # Test that the pipeline can take fit parameters
    pipe = Pipeline([('transf', Transf()), ('clf', FitParamT())])
    pipe.fit(X=None, y=None, clf__should_succeed=True)
    # classifier should return True
    assert pipe.predict(None)
    # and transformer params should not be changed
    assert pipe.named_steps['transf'].a is None
    assert pipe.named_steps['transf'].b is None
    # invalid parameters should raise an error message
    with raises(TypeError, match="unexpected keyword argument"):
        pipe.fit(None, None, clf__bad=True)
Beispiel #13
0
def test_pipeline_raise_set_params_error():
    # Test pipeline raises set params error message for nested models.
    pipe = Pipeline([('cls', LinearRegression())])
    with raises(ValueError, match="Invalid parameter"):
        pipe.set_params(fake='nope')

    # nested model check
    with raises(ValueError, match="Invalid parameter"):
        pipe.set_params(fake__estimator='nope')
Beispiel #14
0
def test_fit_predict_on_pipeline():
    # test that the fit_predict method is implemented on a pipeline
    # test that the fit_predict on pipeline yields same results as applying
    # transform and clustering steps separately
    iris = load_iris()
    scaler = StandardScaler()
    km = KMeans(random_state=0)
    # As pipeline doesn't clone estimators on construction,
    # it must have its own estimators
    scaler_for_pipeline = StandardScaler()
    km_for_pipeline = KMeans(random_state=0)

    # first compute the transform and clustering step separately
    scaled = scaler.fit_transform(iris.data)
    separate_pred = km.fit_predict(scaled)

    # use a pipeline to do the transform and clustering in one step
    pipe = Pipeline([
        ('scaler', scaler_for_pipeline),
        ('Kmeans', km_for_pipeline)
    ])
    pipeline_pred = pipe.fit_predict(iris.data)

    assert_array_almost_equal(pipeline_pred, separate_pred)
Beispiel #15
0
def test_pipeline_with_step_that_implements_both_sample_and_transform():
    # Test the various methods of the pipeline (anova).
    X, y = make_classification(
        n_classes=2,
        class_sep=2,
        weights=[0.1, 0.9],
        n_informative=3,
        n_redundant=1,
        flip_y=0,
        n_features=20,
        n_clusters_per_class=1,
        n_samples=5000,
        random_state=0)

    clf = LogisticRegression()
    with raises(TypeError):
        Pipeline([('step', FitTransformSample()), ('logistic', clf)])
Beispiel #16
0
def test_pipeline_sample():
    # Test whether pipeline works with a sampler at the end.
    # Also test pipeline.sampler
    X, y = make_classification(
        n_classes=2,
        class_sep=2,
        weights=[0.1, 0.9],
        n_informative=3,
        n_redundant=1,
        flip_y=0,
        n_features=20,
        n_clusters_per_class=1,
        n_samples=5000,
        random_state=0)

    rus = RandomUnderSampler(random_state=0)
    pipeline = Pipeline([('rus', rus)])

    # test transform and fit_transform:
    X_trans, y_trans = pipeline.fit(X, y).sample(X, y)
    X_trans2, y_trans2 = pipeline.fit_sample(X, y)
    X_trans3, y_trans3 = rus.fit_sample(X, y)
    assert_allclose(X_trans, X_trans2, rtol=R_TOL)
    assert_allclose(X_trans, X_trans3, rtol=R_TOL)
    assert_allclose(y_trans, y_trans2, rtol=R_TOL)
    assert_allclose(y_trans, y_trans3, rtol=R_TOL)

    pca = PCA()
    pipeline = Pipeline([('pca', PCA()),
                         ('rus', rus)])

    X_trans, y_trans = pipeline.fit(X, y).sample(X, y)
    X_pca = pca.fit_transform(X)
    X_trans2, y_trans2 = rus.fit_sample(X_pca, y)
    # We round the value near to zero. It seems that PCA has some issue
    # with that
    X_trans[np.bitwise_and(X_trans < R_TOL, X_trans > -R_TOL)] = 0
    X_trans2[np.bitwise_and(X_trans2 < R_TOL, X_trans2 > -R_TOL)] = 0
    assert_allclose(X_trans, X_trans2, rtol=R_TOL)
    assert_allclose(y_trans, y_trans2, rtol=R_TOL)
Beispiel #17
0
def test_set_pipeline_step_none():
    # Test setting Pipeline steps to None
    X = np.array([[1]])
    y = np.array([1])
    mult2 = Mult(mult=2)
    mult3 = Mult(mult=3)
    mult5 = Mult(mult=5)

    def make():
        return Pipeline([('m2', mult2), ('m3', mult3), ('last', mult5)])

    pipeline = make()

    exp = 2 * 3 * 5
    assert_array_equal([[exp]], pipeline.fit_transform(X, y))
    assert_array_equal([exp], pipeline.fit(X).predict(X))
    assert_array_equal(X, pipeline.inverse_transform([[exp]]))

    pipeline.set_params(m3=None)
    exp = 2 * 5
    assert_array_equal([[exp]], pipeline.fit_transform(X, y))
    assert_array_equal([exp], pipeline.fit(X).predict(X))
    assert_array_equal(X, pipeline.inverse_transform([[exp]]))
    expected_params = {'steps': pipeline.steps,
                       'm2': mult2,
                       'm3': None,
                       'last': mult5,
                       'memory': None,
                       'm2__mult': 2,
                       'last__mult': 5}
    assert pipeline.get_params(deep=True) == expected_params

    pipeline.set_params(m2=None)
    exp = 5
    assert_array_equal([[exp]], pipeline.fit_transform(X, y))
    assert_array_equal([exp], pipeline.fit(X).predict(X))
    assert_array_equal(X, pipeline.inverse_transform([[exp]]))

    # for other methods, ensure no AttributeErrors on None:
    other_methods = ['predict_proba', 'predict_log_proba',
                     'decision_function', 'transform', 'score']
    for method in other_methods:
        getattr(pipeline, method)(X)

    pipeline.set_params(m2=mult2)
    exp = 2 * 5
    assert_array_equal([[exp]], pipeline.fit_transform(X, y))
    assert_array_equal([exp], pipeline.fit(X).predict(X))
    assert_array_equal(X, pipeline.inverse_transform([[exp]]))

    pipeline = make()
    pipeline.set_params(last=None)
    # mult2 and mult3 are active
    exp = 6
    pipeline.fit(X, y)
    pipeline.transform(X)
    assert_array_equal([[exp]], pipeline.fit(X, y).transform(X))
    assert_array_equal([[exp]], pipeline.fit_transform(X, y))
    assert_array_equal(X, pipeline.inverse_transform([[exp]]))
    with raises(AttributeError, match="has no attribute 'predict'"):
        getattr(pipeline, 'predict')

    # Check None step at construction time
    exp = 2 * 5
    pipeline = Pipeline([('m2', mult2), ('m3', None), ('last', mult5)])
    assert_array_equal([[exp]], pipeline.fit_transform(X, y))
    assert_array_equal([exp], pipeline.fit(X).predict(X))
    assert_array_equal(X, pipeline.inverse_transform([[exp]]))
Beispiel #18
0
def test_pipeline_methods_anova_rus():
    # Test the various methods of the pipeline (anova).
    X, y = make_classification(
        n_classes=2,
        class_sep=2,
        weights=[0.1, 0.9],
        n_informative=3,
        n_redundant=1,
        flip_y=0,
        n_features=20,
        n_clusters_per_class=1,
        n_samples=5000,
        random_state=0)
    # Test with RandomUnderSampling + Anova + LogisticRegression
    clf = LogisticRegression()
    rus = RandomUnderSampler(random_state=0)
    filter1 = SelectKBest(f_classif, k=2)
    pipe = Pipeline([('rus', rus), ('anova', filter1), ('logistic', clf)])
    pipe.fit(X, y)
    pipe.predict(X)
    pipe.predict_proba(X)
    pipe.predict_log_proba(X)
    pipe.score(X, y)
Beispiel #19
0
def test_pipeline_methods_rus_pca_svm():
    # Test the various methods of the pipeline (pca + svm).
    X, y = make_classification(
        n_classes=2,
        class_sep=2,
        weights=[0.1, 0.9],
        n_informative=3,
        n_redundant=1,
        flip_y=0,
        n_features=20,
        n_clusters_per_class=1,
        n_samples=5000,
        random_state=0)

    # Test with PCA + SVC
    clf = SVC(probability=True, random_state=0)
    pca = PCA()
    rus = RandomUnderSampler(random_state=0)
    pipe = Pipeline([('rus', rus), ('pca', pca), ('svc', clf)])
    pipe.fit(X, y)
    pipe.predict(X)
    pipe.predict_proba(X)
    pipe.predict_log_proba(X)
    pipe.score(X, y)
Beispiel #20
0
def test_pipeline_memory_sampler():
    X, y = make_classification(
        n_classes=2,
        class_sep=2,
        weights=[0.1, 0.9],
        n_informative=3,
        n_redundant=1,
        flip_y=0,
        n_features=20,
        n_clusters_per_class=1,
        n_samples=5000,
        random_state=0)
    cachedir = mkdtemp()
    try:
        memory = Memory(cachedir=cachedir, verbose=10)
        # Test with Transformer + SVC
        clf = SVC(probability=True, random_state=0)
        transf = DummySampler()
        pipe = Pipeline([('transf', clone(transf)), ('svc', clf)])
        cached_pipe = Pipeline([('transf', transf), ('svc', clf)],
                               memory=memory)

        # Memoize the transformer at the first fit
        cached_pipe.fit(X, y)
        pipe.fit(X, y)
        # Get the time stamp of the tranformer in the cached pipeline
        expected_ts = cached_pipe.named_steps['transf'].timestamp_
        # Check that cached_pipe and pipe yield identical results
        assert_array_equal(pipe.predict(X), cached_pipe.predict(X))
        assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X))
        assert_array_equal(pipe.predict_log_proba(X),
                           cached_pipe.predict_log_proba(X))
        assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y))
        assert_array_equal(pipe.named_steps['transf'].means_,
                           cached_pipe.named_steps['transf'].means_)
        assert not hasattr(transf, 'means_')
        # Check that we are reading the cache while fitting
        # a second time
        cached_pipe.fit(X, y)
        # Check that cached_pipe and pipe yield identical results
        assert_array_equal(pipe.predict(X), cached_pipe.predict(X))
        assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X))
        assert_array_equal(pipe.predict_log_proba(X),
                           cached_pipe.predict_log_proba(X))
        assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y))
        assert_array_equal(pipe.named_steps['transf'].means_,
                           cached_pipe.named_steps['transf'].means_)
        assert cached_pipe.named_steps['transf'].timestamp_ == expected_ts
        # Create a new pipeline with cloned estimators
        # Check that even changing the name step does not affect the cache hit
        clf_2 = SVC(probability=True, random_state=0)
        transf_2 = DummySampler()
        cached_pipe_2 = Pipeline([('transf_2', transf_2), ('svc', clf_2)],
                                 memory=memory)
        cached_pipe_2.fit(X, y)

        # Check that cached_pipe and pipe yield identical results
        assert_array_equal(pipe.predict(X), cached_pipe_2.predict(X))
        assert_array_equal(pipe.predict_proba(X),
                           cached_pipe_2.predict_proba(X))
        assert_array_equal(pipe.predict_log_proba(X),
                           cached_pipe_2.predict_log_proba(X))
        assert_array_equal(pipe.score(X, y), cached_pipe_2.score(X, y))
        assert_array_equal(pipe.named_steps['transf'].means_,
                           cached_pipe_2.named_steps['transf_2'].means_)
        assert cached_pipe_2.named_steps['transf_2'].timestamp_ == expected_ts
    finally:
        shutil.rmtree(cachedir)
Beispiel #21
0
def test_pipeline_memory_transformer():
    iris = load_iris()
    X = iris.data
    y = iris.target
    cachedir = mkdtemp()
    try:
        memory = Memory(cachedir=cachedir, verbose=10)
        # Test with Transformer + SVC
        clf = SVC(probability=True, random_state=0)
        transf = DummyTransf()
        pipe = Pipeline([('transf', clone(transf)), ('svc', clf)])
        cached_pipe = Pipeline([('transf', transf), ('svc', clf)],
                               memory=memory)

        # Memoize the transformer at the first fit
        cached_pipe.fit(X, y)
        pipe.fit(X, y)
        # Get the time stamp of the tranformer in the cached pipeline
        expected_ts = cached_pipe.named_steps['transf'].timestamp_
        # Check that cached_pipe and pipe yield identical results
        assert_array_equal(pipe.predict(X), cached_pipe.predict(X))
        assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X))
        assert_array_equal(pipe.predict_log_proba(X),
                           cached_pipe.predict_log_proba(X))
        assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y))
        assert_array_equal(pipe.named_steps['transf'].means_,
                           cached_pipe.named_steps['transf'].means_)
        assert not hasattr(transf, 'means_')
        # Check that we are reading the cache while fitting
        # a second time
        cached_pipe.fit(X, y)
        # Check that cached_pipe and pipe yield identical results
        assert_array_equal(pipe.predict(X), cached_pipe.predict(X))
        assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X))
        assert_array_equal(pipe.predict_log_proba(X),
                           cached_pipe.predict_log_proba(X))
        assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y))
        assert_array_equal(pipe.named_steps['transf'].means_,
                           cached_pipe.named_steps['transf'].means_)
        assert cached_pipe.named_steps['transf'].timestamp_ == expected_ts
        # Create a new pipeline with cloned estimators
        # Check that even changing the name step does not affect the cache hit
        clf_2 = SVC(probability=True, random_state=0)
        transf_2 = DummyTransf()
        cached_pipe_2 = Pipeline([('transf_2', transf_2), ('svc', clf_2)],
                                 memory=memory)
        cached_pipe_2.fit(X, y)

        # Check that cached_pipe and pipe yield identical results
        assert_array_equal(pipe.predict(X), cached_pipe_2.predict(X))
        assert_array_equal(pipe.predict_proba(X),
                           cached_pipe_2.predict_proba(X))
        assert_array_equal(pipe.predict_log_proba(X),
                           cached_pipe_2.predict_log_proba(X))
        assert_array_equal(pipe.score(X, y), cached_pipe_2.score(X, y))
        assert_array_equal(pipe.named_steps['transf'].means_,
                           cached_pipe_2.named_steps['transf_2'].means_)
        assert cached_pipe_2.named_steps['transf_2'].timestamp_ == expected_ts
    finally:
        shutil.rmtree(cachedir)
Beispiel #22
0
def test_pipeline_methods_anova():
    # Test the various methods of the pipeline (anova).
    iris = load_iris()
    X = iris.data
    y = iris.target
    # Test with Anova + LogisticRegression
    clf = LogisticRegression()
    filter1 = SelectKBest(f_classif, k=2)
    pipe = Pipeline([('anova', filter1), ('logistic', clf)])
    pipe.fit(X, y)
    pipe.predict(X)
    pipe.predict_proba(X)
    pipe.predict_log_proba(X)
    pipe.score(X, y)
Beispiel #23
0
 def make():
     return Pipeline([('m2', mult2), ('m3', mult3), ('last', mult5)])
Beispiel #24
0
def test_set_pipeline_steps():
    transf1 = Transf()
    transf2 = Transf()
    pipeline = Pipeline([('mock', transf1)])
    assert pipeline.named_steps['mock'] is transf1

    # Directly setting attr
    pipeline.steps = [('mock2', transf2)]
    assert 'mock' not in pipeline.named_steps
    assert pipeline.named_steps['mock2'] is transf2
    assert [('mock2', transf2)] == pipeline.steps

    # Using set_params
    pipeline.set_params(steps=[('mock', transf1)])
    assert [('mock', transf1)] == pipeline.steps

    # Using set_params to replace single step
    pipeline.set_params(mock=transf2)
    assert [('mock', transf2)] == pipeline.steps

    # With invalid data
    pipeline.set_params(steps=[('junk', ())])
    with raises(TypeError):
        pipeline.fit([[1]], [1])
    with raises(TypeError):
        pipeline.fit_transform([[1]], [1])
Beispiel #25
0
def test_pipeline_init():
    # Test the various init parameters of the pipeline.
    with raises(TypeError):
        Pipeline()
    # Check that we can't instantiate pipelines with objects without fit
    # method
    error_regex = 'Last step of Pipeline should implement fit. .*NoFit.*'
    with raises(TypeError, match=error_regex):
        Pipeline([('clf', NoFit())])
    # Smoke test with only an estimator
    clf = NoTrans()
    pipe = Pipeline([('svc', clf)])
    expected = dict(svc__a=None, svc__b=None, svc=clf,
                    **pipe.get_params(deep=False))
    assert pipe.get_params(deep=True) == expected

    # Check that params are set
    pipe.set_params(svc__a=0.1)
    assert clf.a == 0.1
    assert clf.b is None
    # Smoke test the repr:
    repr(pipe)

    # Test with two objects
    clf = SVC()
    filter1 = SelectKBest(f_classif)
    pipe = Pipeline([('anova', filter1), ('svc', clf)])

    # Check that we can't instantiate with non-transformers on the way
    # Note that NoTrans implements fit, but not transform
    error_regex = 'implement fit and transform or sample'
    with raises(TypeError, match=error_regex):
        Pipeline([('t', NoTrans()), ('svc', clf)])

    # Check that params are set
    pipe.set_params(svc__C=0.1)
    assert clf.C == 0.1
    # Smoke test the repr:
    repr(pipe)

    # Check that params are not set when naming them wrong
    with raises(ValueError):
        pipe.set_params(anova__C=0.1)

    # Test clone
    pipe2 = clone(pipe)
    assert not pipe.named_steps['svc'] is pipe2.named_steps['svc']

    # Check that apart from estimators, the parameters are the same
    params = pipe.get_params(deep=True)
    params2 = pipe2.get_params(deep=True)

    for x in pipe.get_params(deep=False):
        params.pop(x)

    for x in pipe2.get_params(deep=False):
        params2.pop(x)

    # Remove estimators that where copied
    params.pop('svc')
    params.pop('anova')
    params2.pop('svc')
    params2.pop('anova')
    assert params == params2
Beispiel #26
0
def test_pipeline_methods_pca_svm():
    # Test the various methods of the pipeline (pca + svm).
    iris = load_iris()
    X = iris.data
    y = iris.target
    # Test with PCA + SVC
    clf = SVC(probability=True, random_state=0)
    pca = PCA(svd_solver='full', n_components='mle', whiten=True)
    pipe = Pipeline([('pca', pca), ('svc', clf)])
    pipe.fit(X, y)
    pipe.predict(X)
    pipe.predict_proba(X)
    pipe.predict_log_proba(X)
    pipe.score(X, y)