Beispiel #1
0
def main(args):
    init_ray(args.num_cpus, args.num_gpus, args.ray_redis_address)

    if not os.path.exists(args.log):
        os.makedirs(args.log)
    if not os.path.exists(os.path.join(args.log, 'models')):
        os.mkdir(os.path.join(args.log, 'models'))
    score_file = os.path.join(args.log, 'progress.csv')
    logger.add_tabular_output(score_file)
    logger.add_tensorboard_output(args.log)
    with open(os.path.join(args.log, 'args.json'), 'w') as f:
        json.dump(vars(args), f)
    pprint(vars(args))

    # when doing the distributed training, disable video recordings
    env = GymEnv(args.env_name)
    env.env.seed(args.seed)
    if args.c2d:
        env = C2DEnv(env)

    observation_space = env.observation_space
    action_space = env.action_space
    pol_net = PolNet(observation_space, action_space)
    rnn = False
    # pol_net = PolNetLSTM(observation_space, action_space)
    # rnn = True
    if isinstance(action_space, gym.spaces.Box):
        pol = GaussianPol(observation_space, action_space, pol_net, rnn=rnn)
    elif isinstance(action_space, gym.spaces.Discrete):
        pol = CategoricalPol(observation_space, action_space, pol_net)
    elif isinstance(action_space, gym.spaces.MultiDiscrete):
        pol = MultiCategoricalPol(observation_space, action_space, pol_net)
    else:
        raise ValueError('Only Box, Discrete, and MultiDiscrete are supported')

    vf_net = VNet(observation_space)
    vf = DeterministicSVfunc(observation_space, vf_net)

    trainer = TrainManager(Trainer,
                           args.num_trainer,
                           args.master_address,
                           args=args,
                           vf=vf,
                           pol=pol)
    sampler = EpiSampler(env, pol, args.num_parallel, seed=args.seed)

    total_epi = 0
    total_step = 0
    max_rew = -1e6
    start_time = time.time()

    while args.max_epis > total_epi:

        with measure('sample'):
            sampler.set_pol_state(trainer.get_state("pol"))
            epis = sampler.sample(max_steps=args.max_steps_per_iter)

        with measure('train'):
            result_dict = trainer.train(epis=epis)

        step = result_dict["traj_num_step"]
        total_step += step
        total_epi += result_dict["traj_num_epi"]

        rewards = [np.sum(epi['rews']) for epi in epis]
        mean_rew = np.mean(rewards)
        elapsed_time = time.time() - start_time
        logger.record_tabular('ElapsedTime', elapsed_time)
        logger.record_results(args.log,
                              result_dict,
                              score_file,
                              total_epi,
                              step,
                              total_step,
                              rewards,
                              plot_title=args.env_name)

        with measure('save'):
            pol_state = trainer.get_state("pol")
            vf_state = trainer.get_state("vf")
            optim_pol_state = trainer.get_state("optim_pol")
            optim_vf_state = trainer.get_state("optim_vf")

            torch.save(pol_state,
                       os.path.join(args.log, 'models', 'pol_last.pkl'))
            torch.save(vf_state, os.path.join(args.log, 'models',
                                              'vf_last.pkl'))
            torch.save(optim_pol_state,
                       os.path.join(args.log, 'models', 'optim_pol_last.pkl'))
            torch.save(optim_vf_state,
                       os.path.join(args.log, 'models', 'optim_vf_last.pkl'))

            if mean_rew > max_rew:
                torch.save(pol_state,
                           os.path.join(args.log, 'models', 'pol_max.pkl'))
                torch.save(vf_state,
                           os.path.join(args.log, 'models', 'vf_max.pkl'))
                torch.save(
                    optim_pol_state,
                    os.path.join(args.log, 'models', 'optim_pol_max.pkl'))
                torch.save(
                    optim_vf_state,
                    os.path.join(args.log, 'models', 'optim_vf_max.pkl'))
                max_rew = mean_rew
    del sampler
    del trainer
Beispiel #2
0
# modelの保存場所確保
if not os.path.exists(os.path.join(args.log, 'models')):
    os.mkdir(os.path.join(args.log, 'models'))

# 乱数の種固定
np.random.seed(args.seed)
torch.manual_seed(args.seed)

# GPU or CPU
device_name = 'cpu' if args.cuda < 0 else "cuda:{}".format(args.cuda)
device = torch.device(device_name)
set_device(device)

# logのcsvファイル確保
score_file = os.path.join(args.log, 'progress.csv')
logger.add_tabular_output(score_file)

# Gymのenviromentを生成
from pybullet_envs.bullet.kukaCamGymEnv import KukaCamGymEnv
env = KukaCamGymEnv(renders=False,
                    isDiscrete=False)  # renders=Trueだとmachinaのtrain進まない。相性が悪い?
env = FlattenedObservationWrapper(env)
flattend_observation_space = env.flattend_observation_space

env = GymEnv(env,
             log_dir=os.path.join(args.log, 'movie'),
             record_video=args.record)
env.env.seed(args.seed)

# 観測と行動の次元
observation_space = env.observation_space
Beispiel #3
0
    def train(self):
        args = self.args

        # TODO: cuda seems to be broken, I don't care about it right now
        # if args.cuda:
        #     # current_obs = current_obs.cuda()
        #     rollouts.cuda()

        self.train_start_time = time.time()
        total_epi = 0
        total_step = 0
        max_rew = -1e6
        sampler = None

        score_file = os.path.join(self.logger.get_logdir(), "progress.csv")
        logger.add_tabular_output(score_file)

        num_total_frames = args.num_total_frames

        mirror_function = None
        if args.mirror_tuples and hasattr(self.env.unwrapped,
                                          "mirror_indices"):
            mirror_function = get_mirror_function(
                **self.env.unwrapped.mirror_indices)
            num_total_frames *= 2
            if not args.tanh_finish:
                warnings.warn(
                    "When `mirror_tuples` is `True`,"
                    " `tanh_finish` should be set to `True` as well."
                    " Otherwise there is a chance of the training blowing up.")

        while num_total_frames > total_step:
            # setup the correct curriculum learning environment/parameters
            new_curriculum = self.curriculum_handler(total_step /
                                                     args.num_total_frames)

            if total_step == 0 or new_curriculum:
                if sampler is not None:
                    del sampler
                sampler = EpiSampler(
                    self.env,
                    self.pol,
                    num_parallel=self.args.num_processes,
                    seed=self.args.seed + total_step,  # TODO: better fix?
                )

            with measure("sample"):
                epis = sampler.sample(self.pol,
                                      max_steps=args.num_steps *
                                      args.num_processes)

            with measure("train"):
                with measure("epis"):
                    traj = Traj()
                    traj.add_epis(epis)

                    traj = ef.compute_vs(traj, self.vf)
                    traj = ef.compute_rets(traj, args.decay_gamma)
                    traj = ef.compute_advs(traj, args.decay_gamma,
                                           args.gae_lambda)
                    traj = ef.centerize_advs(traj)
                    traj = ef.compute_h_masks(traj)
                    traj.register_epis()

                    if mirror_function:
                        traj.add_traj(mirror_function(traj))

                # if args.data_parallel:
                #     self.pol.dp_run = True
                #     self.vf.dp_run = True

                result_dict = ppo_clip.train(
                    traj=traj,
                    pol=self.pol,
                    vf=self.vf,
                    clip_param=args.clip_eps,
                    optim_pol=self.optim_pol,
                    optim_vf=self.optim_vf,
                    epoch=args.epoch_per_iter,
                    batch_size=args.batch_size
                    if not args.rnn else args.rnn_batch_size,
                    max_grad_norm=args.max_grad_norm,
                )

                # if args.data_parallel:
                #     self.pol.dp_run = False
                #     self.vf.dp_run = False

            ## append the metrics to the `results_dict` (reported in the progress.csv)
            result_dict.update(self.get_extra_metrics(epis))

            total_epi += traj.num_epi
            step = traj.num_step
            total_step += step
            rewards = [np.sum(epi["rews"]) for epi in epis]
            mean_rew = np.mean(rewards)
            logger.record_results(
                self.logger.get_logdir(),
                result_dict,
                score_file,
                total_epi,
                step,
                total_step,
                rewards,
                plot_title=args.env,
            )

            if mean_rew > max_rew:
                self.save_models("max")
                max_rew = mean_rew

            self.save_models("last")

            self.scheduler_pol.step()
            self.scheduler_vf.step()

            del traj