Beispiel #1
0
    def _to_tensors(self, note_sequence):
        """Converts NoteSequence to unique, one-hot tensor sequences."""
        try:
            if self._steps_per_quarter:
                quantized_sequence = mm.quantize_note_sequence(
                    note_sequence, self._steps_per_quarter)
                if (mm.steps_per_bar_in_quantized_sequence(quantized_sequence)
                        != self._steps_per_bar):
                    return [], []
            else:
                quantized_sequence = mm.quantize_note_sequence_absolute(
                    note_sequence, self._steps_per_second)
        except (mm.BadTimeSignatureException,
                mm.NonIntegerStepsPerBarException,
                mm.NegativeTimeException) as e:
            return [], []

        event_lists, unused_stats = self._event_extractor_fn(
            quantized_sequence)
        if self._pad_to_total_time:
            for e in event_lists:
                e.set_length(len(e) + e.start_step, from_left=True)
                e.set_length(quantized_sequence.total_quantized_steps)
        if self._slice_steps:
            sliced_event_tuples = []
            for l in event_lists:
                for i in range(self._slice_steps,
                               len(l) + 1, self._steps_per_bar):
                    sliced_event_tuples.append(
                        tuple(l[i - self._slice_steps:i]))
        else:
            sliced_event_tuples = [tuple(l) for l in event_lists]

        # TODO(adarob): Consider handling the fact that different event lists can
        # be mapped to identical tensors by the encoder_decoder (e.g., Drums).

        unique_event_tuples = list(set(sliced_event_tuples))
        unique_event_tuples = self._maybe_sample_outputs(unique_event_tuples)

        seqs = []
        for t in unique_event_tuples:
            seqs.append(
                np_onehot(
                    [self._legacy_encoder_decoder.encode_event(e) for e in t] +
                    ([] if self.end_token is None else [self.end_token]),
                    self.output_depth, self.output_dtype))

        return seqs, seqs
Beispiel #2
0
  def _to_tensors(self, note_sequence):
    """Converts NoteSequence to unique, one-hot tensor sequences."""
    try:
      if self._steps_per_quarter:
        quantized_sequence = mm.quantize_note_sequence(
            note_sequence, self._steps_per_quarter)
        if (mm.steps_per_bar_in_quantized_sequence(quantized_sequence) !=
            self._steps_per_bar):
          return [], []
      else:
        quantized_sequence = mm.quantize_note_sequence_absolute(
            note_sequence, self._steps_per_second)
    except (mm.BadTimeSignatureException, mm.NonIntegerStepsPerBarException,
            mm.NegativeTimeException) as e:
      return [], []

    event_lists, unused_stats = self._event_extractor_fn(quantized_sequence)
    if self._pad_to_total_time:
      for e in event_lists:
        e.set_length(len(e) + e.start_step, from_left=True)
        e.set_length(quantized_sequence.total_quantized_steps)
    if self._slice_steps:
      sliced_event_tuples = []
      for l in event_lists:
        for i in range(self._slice_steps, len(l) + 1, self._steps_per_bar):
          sliced_event_tuples.append(tuple(l[i - self._slice_steps: i]))
    else:
      sliced_event_tuples = [tuple(l) for l in event_lists]

    # TODO(adarob): Consider handling the fact that different event lists can
    # be mapped to identical tensors by the encoder_decoder (e.g., Drums).

    unique_event_tuples = list(set(sliced_event_tuples))
    unique_event_tuples = self._maybe_sample_outputs(unique_event_tuples)

    seqs = []
    for t in unique_event_tuples:
      seqs.append(np_onehot(
          [self._legacy_encoder_decoder.encode_event(e) for e in t] +
          ([] if self.end_token is None else [self.end_token]),
          self.output_depth, self.output_dtype))

    return seqs, seqs
Beispiel #3
0
  def _generate(self, input_sequence, generator_options):
    if len(generator_options.input_sections) > 1:
      raise mm.SequenceGeneratorException(
          'This model supports at most one input_sections message, but got %s' %
          len(generator_options.input_sections))
    if len(generator_options.generate_sections) != 1:
      raise mm.SequenceGeneratorException(
          'This model supports only 1 generate_sections message, but got %s' %
          len(generator_options.generate_sections))

    generate_section = generator_options.generate_sections[0]
    if generator_options.input_sections:
      input_section = generator_options.input_sections[0]
      primer_sequence = mm.trim_note_sequence(
          input_sequence, input_section.start_time, input_section.end_time)
      input_start_step = mm.quantize_to_step(
          input_section.start_time, self.steps_per_second, quantize_cutoff=0.0)
    else:
      primer_sequence = input_sequence
      input_start_step = 0

    last_end_time = (max(n.end_time for n in primer_sequence.notes)
                     if primer_sequence.notes else 0)
    if last_end_time > generate_section.start_time:
      raise mm.SequenceGeneratorException(
          'Got GenerateSection request for section that is before or equal to '
          'the end of the NoteSequence. This model can only extend sequences. '
          'Requested start time: %s, Final note end time: %s' %
          (generate_section.start_time, last_end_time))

    # Quantize the priming sequence.
    quantized_primer_sequence = mm.quantize_note_sequence_absolute(
        primer_sequence, self.steps_per_second)

    extracted_perfs, _ = performance_lib.extract_performances(
        quantized_primer_sequence, start_step=input_start_step,
        num_velocity_bins=self.num_velocity_bins)
    assert len(extracted_perfs) <= 1

    generate_start_step = mm.quantize_to_step(
        generate_section.start_time, self.steps_per_second, quantize_cutoff=0.0)
    # Note that when quantizing end_step, we set quantize_cutoff to 1.0 so it
    # always rounds down. This avoids generating a sequence that ends at 5.0
    # seconds when the requested end time is 4.99.
    generate_end_step = mm.quantize_to_step(
        generate_section.end_time, self.steps_per_second, quantize_cutoff=1.0)

    if extracted_perfs and extracted_perfs[0]:
      performance = extracted_perfs[0]
    else:
      # If no track could be extracted, create an empty track that starts at the
      # requested generate_start_step.
      performance = performance_lib.Performance(
          steps_per_second=(
              quantized_primer_sequence.quantization_info.steps_per_second),
          start_step=generate_start_step,
          num_velocity_bins=self.num_velocity_bins)

    # Ensure that the track extends up to the step we want to start generating.
    performance.set_length(generate_start_step - performance.start_step)

    # Extract generation arguments from generator options.
    arg_types = {
        'temperature': lambda arg: arg.float_value,
        'beam_size': lambda arg: arg.int_value,
        'branch_factor': lambda arg: arg.int_value,
        'steps_per_iteration': lambda arg: arg.int_value
    }
    args = dict((name, value_fn(generator_options.args[name]))
                for name, value_fn in arg_types.items()
                if name in generator_options.args)

    total_steps = performance.num_steps + (
        generate_end_step - generate_start_step)

    if not performance:
      # Primer is empty; let's just start with silence.
      performance.set_length(min(performance_lib.MAX_SHIFT_STEPS, total_steps))

    while performance.num_steps < total_steps:
      # Assume there's around 10 notes per second and 4 RNN steps per note.
      # Can't know for sure until generation is finished because the number of
      # notes per quantized step is variable.
      steps_to_gen = total_steps - performance.num_steps
      rnn_steps_to_gen = 40 * int(math.ceil(
          float(steps_to_gen) / performance_lib.DEFAULT_STEPS_PER_SECOND))
      tf.logging.info(
          'Need to generate %d more steps for this sequence, will try asking '
          'for %d RNN steps' % (steps_to_gen, rnn_steps_to_gen))
      performance = self._model.generate_performance(
          len(performance) + rnn_steps_to_gen, performance, **args)

      if not self.fill_generate_section:
        # In the interest of speed just go through this loop once, which may not
        # entirely fill the generate section.
        break

    performance.set_length(total_steps)

    generated_sequence = performance.to_sequence(
        max_note_duration=self.max_note_duration)

    assert (generated_sequence.total_time - generate_section.end_time) <= 1e-5
    return generated_sequence
    def _generate(self, input_sequence, generator_options):
        if len(generator_options.input_sections) > 1:
            raise sequence_generator.SequenceGeneratorError(
                'This model supports at most one input_sections message, but got %s'
                % len(generator_options.input_sections))
        if len(generator_options.generate_sections) != 1:
            raise sequence_generator.SequenceGeneratorError(
                'This model supports only 1 generate_sections message, but got %s'
                % len(generator_options.generate_sections))

        generate_section = generator_options.generate_sections[0]
        if generator_options.input_sections:
            input_section = generator_options.input_sections[0]
            primer_sequence = mm.trim_note_sequence(input_sequence,
                                                    input_section.start_time,
                                                    input_section.end_time)
            input_start_step = mm.quantize_to_step(input_section.start_time,
                                                   self.steps_per_second,
                                                   quantize_cutoff=0.0)
        else:
            primer_sequence = input_sequence
            input_start_step = 0
        if primer_sequence.notes:
            last_end_time = max(n.end_time for n in primer_sequence.notes)
        else:
            last_end_time = 0
        if last_end_time > generate_section.start_time:
            raise sequence_generator.SequenceGeneratorError(
                'Got GenerateSection request for section that is before or equal to '
                'the end of the NoteSequence. This model can only extend sequences. '
                'Requested start time: %s, Final note end time: %s' %
                (generate_section.start_time, last_end_time))

        # Quantize the priming sequence.
        quantized_primer_sequence = mm.quantize_note_sequence_absolute(
            primer_sequence, self.steps_per_second)

        extracted_perfs, _ = performance_pipeline.extract_performances(
            quantized_primer_sequence,
            start_step=input_start_step,
            num_velocity_bins=self.num_velocity_bins,
            note_performance=self._note_performance)
        assert len(extracted_perfs) <= 1

        generate_start_step = mm.quantize_to_step(generate_section.start_time,
                                                  self.steps_per_second,
                                                  quantize_cutoff=0.0)
        # Note that when quantizing end_step, we set quantize_cutoff to 1.0 so it
        # always rounds down. This avoids generating a sequence that ends at 5.0
        # seconds when the requested end time is 4.99.
        generate_end_step = mm.quantize_to_step(generate_section.end_time,
                                                self.steps_per_second,
                                                quantize_cutoff=1.0)

        if extracted_perfs and extracted_perfs[0]:
            performance = extracted_perfs[0]
        else:
            # If no track could be extracted, create an empty track that starts at the
            # requested generate_start_step.
            performance = mm.Performance(
                steps_per_second=(quantized_primer_sequence.quantization_info.
                                  steps_per_second),
                start_step=generate_start_step,
                num_velocity_bins=self.num_velocity_bins)

        # Ensure that the track extends up to the step we want to start generating.
        performance.set_length(generate_start_step - performance.start_step)

        # Extract generation arguments from generator options.
        arg_types = {
            'disable_conditioning':
            lambda arg: ast.literal_eval(arg.string_value),
            'temperature': lambda arg: arg.float_value,
            'beam_size': lambda arg: arg.int_value,
            'branch_factor': lambda arg: arg.int_value,
            'steps_per_iteration': lambda arg: arg.int_value
        }
        if self.control_signals:
            for control in self.control_signals:
                arg_types[control.name] = lambda arg: ast.literal_eval(
                    arg.string_value)

        args = dict((name, value_fn(generator_options.args[name]))
                    for name, value_fn in arg_types.items()
                    if name in generator_options.args)

        # Make sure control signals are present and convert to lists if necessary.
        if self.control_signals:
            for control in self.control_signals:
                if control.name not in args:
                    tf.logging.warning(
                        'Control value not specified, using default: %s = %s',
                        control.name, control.default_value)
                    args[control.name] = [control.default_value]
                elif control.validate(args[control.name]):
                    args[control.name] = [args[control.name]]
                else:
                    if not isinstance(args[control.name], list) or not all(
                            control.validate(value)
                            for value in args[control.name]):
                        tf.logging.fatal('Invalid control value: %s = %s',
                                         control.name, args[control.name])

        # Make sure disable conditioning flag is present when conditioning is
        # optional and convert to list if necessary.
        if self.optional_conditioning:
            if 'disable_conditioning' not in args:
                args['disable_conditioning'] = [False]
            elif isinstance(args['disable_conditioning'], bool):
                args['disable_conditioning'] = [args['disable_conditioning']]
            else:
                if not isinstance(
                        args['disable_conditioning'], list) or not all(
                            isinstance(value, bool)
                            for value in args['disable_conditioning']):
                    tf.logging.fatal('Invalid disable_conditioning value: %s',
                                     args['disable_conditioning'])

        total_steps = performance.num_steps + (generate_end_step -
                                               generate_start_step)

        if 'notes_per_second' in args:
            mean_note_density = (sum(args['notes_per_second']) /
                                 len(args['notes_per_second']))
        else:
            mean_note_density = DEFAULT_NOTE_DENSITY

        # Set up functions that map generation step to control signal values and
        # disable conditioning flag.
        if self.control_signals:
            control_signal_fns = []
            for control in self.control_signals:
                control_signal_fns.append(
                    functools.partial(_step_to_value,
                                      num_steps=total_steps,
                                      values=args[control.name]))
                del args[control.name]
            args['control_signal_fns'] = control_signal_fns
        if self.optional_conditioning:
            args['disable_conditioning_fn'] = functools.partial(
                _step_to_value,
                num_steps=total_steps,
                values=args['disable_conditioning'])
            del args['disable_conditioning']

        if not performance:
            # Primer is empty; let's just start with silence.
            performance.set_length(
                min(performance.max_shift_steps, total_steps))

        while performance.num_steps < total_steps:
            # Assume the average specified (or default) note density and 4 RNN steps
            # per note. Can't know for sure until generation is finished because the
            # number of notes per quantized step is variable.
            note_density = max(1.0, mean_note_density)
            steps_to_gen = total_steps - performance.num_steps
            rnn_steps_to_gen = int(
                math.ceil(4.0 * note_density * steps_to_gen /
                          self.steps_per_second))
            tf.logging.info(
                'Need to generate %d more steps for this sequence, will try asking '
                'for %d RNN steps' % (steps_to_gen, rnn_steps_to_gen))
            performance = self._model.generate_performance(
                len(performance) + rnn_steps_to_gen, performance, **args)

            if not self.fill_generate_section:
                # In the interest of speed just go through this loop once, which may not
                # entirely fill the generate section.
                break

        performance.set_length(total_steps)

        generated_sequence = performance.to_sequence(
            max_note_duration=self.max_note_duration)

        assert (generated_sequence.total_time -
                generate_section.end_time) <= 1e-5
        return generated_sequence
  def _generate(self, input_sequence, generator_options):
    if len(generator_options.input_sections) > 1:
      raise mm.SequenceGeneratorError(
          'This model supports at most one input_sections message, but got %s' %
          len(generator_options.input_sections))
    if len(generator_options.generate_sections) != 1:
      raise mm.SequenceGeneratorError(
          'This model supports only 1 generate_sections message, but got %s' %
          len(generator_options.generate_sections))

    generate_section = generator_options.generate_sections[0]
    if generator_options.input_sections:
      input_section = generator_options.input_sections[0]
      primer_sequence = mm.trim_note_sequence(
          input_sequence, input_section.start_time, input_section.end_time)
      input_start_step = mm.quantize_to_step(
          input_section.start_time, self.steps_per_second, quantize_cutoff=0.0)
    else:
      primer_sequence = input_sequence
      input_start_step = 0
    if primer_sequence.notes:
      last_end_time = max(n.end_time for n in primer_sequence.notes)
    else:
      last_end_time = 0
    if last_end_time > generate_section.start_time:
      raise mm.SequenceGeneratorError(
          'Got GenerateSection request for section that is before or equal to '
          'the end of the NoteSequence. This model can only extend sequences. '
          'Requested start time: %s, Final note end time: %s' %
          (generate_section.start_time, last_end_time))

    # Quantize the priming sequence.
    quantized_primer_sequence = mm.quantize_note_sequence_absolute(
        primer_sequence, self.steps_per_second)

    extracted_perfs, _ = mm.extract_performances(
        quantized_primer_sequence, start_step=input_start_step,
        num_velocity_bins=self.num_velocity_bins,
        note_performance=self._note_performance)
    assert len(extracted_perfs) <= 1

    generate_start_step = mm.quantize_to_step(
        generate_section.start_time, self.steps_per_second, quantize_cutoff=0.0)
    # Note that when quantizing end_step, we set quantize_cutoff to 1.0 so it
    # always rounds down. This avoids generating a sequence that ends at 5.0
    # seconds when the requested end time is 4.99.
    generate_end_step = mm.quantize_to_step(
        generate_section.end_time, self.steps_per_second, quantize_cutoff=1.0)

    if extracted_perfs and extracted_perfs[0]:
      performance = extracted_perfs[0]
    else:
      # If no track could be extracted, create an empty track that starts at the
      # requested generate_start_step.
      performance = mm.Performance(
          steps_per_second=(
              quantized_primer_sequence.quantization_info.steps_per_second),
          start_step=generate_start_step,
          num_velocity_bins=self.num_velocity_bins)

    # Ensure that the track extends up to the step we want to start generating.
    performance.set_length(generate_start_step - performance.start_step)

    # Extract generation arguments from generator options.
    arg_types = {
        'disable_conditioning': lambda arg: ast.literal_eval(arg.string_value),
        'temperature': lambda arg: arg.float_value,
        'beam_size': lambda arg: arg.int_value,
        'branch_factor': lambda arg: arg.int_value,
        'steps_per_iteration': lambda arg: arg.int_value
    }
    if self.control_signals:
      for control in self.control_signals:
        arg_types[control.name] = lambda arg: ast.literal_eval(arg.string_value)

    args = dict((name, value_fn(generator_options.args[name]))
                for name, value_fn in arg_types.items()
                if name in generator_options.args)

    # Make sure control signals are present and convert to lists if necessary.
    if self.control_signals:
      for control in self.control_signals:
        if control.name not in args:
          tf.logging.warning(
              'Control value not specified, using default: %s = %s',
              control.name, control.default_value)
          args[control.name] = [control.default_value]
        elif control.validate(args[control.name]):
          args[control.name] = [args[control.name]]
        else:
          if not isinstance(args[control.name], list) or not all(
              control.validate(value) for value in args[control.name]):
            tf.logging.fatal(
                'Invalid control value: %s = %s',
                control.name, args[control.name])

    # Make sure disable conditioning flag is present when conditioning is
    # optional and convert to list if necessary.
    if self.optional_conditioning:
      if 'disable_conditioning' not in args:
        args['disable_conditioning'] = [False]
      elif isinstance(args['disable_conditioning'], bool):
        args['disable_conditioning'] = [args['disable_conditioning']]
      else:
        if not isinstance(args['disable_conditioning'], list) or not all(
            isinstance(value, bool) for value in args['disable_conditioning']):
          tf.logging.fatal(
              'Invalid disable_conditioning value: %s',
              args['disable_conditioning'])

    total_steps = performance.num_steps + (
        generate_end_step - generate_start_step)

    if 'notes_per_second' in args:
      mean_note_density = (
          sum(args['notes_per_second']) / len(args['notes_per_second']))
    else:
      mean_note_density = DEFAULT_NOTE_DENSITY

    # Set up functions that map generation step to control signal values and
    # disable conditioning flag.
    if self.control_signals:
      control_signal_fns = []
      for control in self.control_signals:
        control_signal_fns.append(functools.partial(
            _step_to_value,
            num_steps=total_steps,
            values=args[control.name]))
        del args[control.name]
      args['control_signal_fns'] = control_signal_fns
    if self.optional_conditioning:
      args['disable_conditioning_fn'] = functools.partial(
          _step_to_value,
          num_steps=total_steps,
          values=args['disable_conditioning'])
      del args['disable_conditioning']

    if not performance:
      # Primer is empty; let's just start with silence.
      performance.set_length(min(performance.max_shift_steps, total_steps))

    while performance.num_steps < total_steps:
      # Assume the average specified (or default) note density and 4 RNN steps
      # per note. Can't know for sure until generation is finished because the
      # number of notes per quantized step is variable.
      note_density = max(1.0, mean_note_density)
      steps_to_gen = total_steps - performance.num_steps
      rnn_steps_to_gen = int(math.ceil(
          4.0 * note_density * steps_to_gen / self.steps_per_second))
      tf.logging.info(
          'Need to generate %d more steps for this sequence, will try asking '
          'for %d RNN steps' % (steps_to_gen, rnn_steps_to_gen))
      performance = self._model.generate_performance(
          len(performance) + rnn_steps_to_gen, performance, **args)

      if not self.fill_generate_section:
        # In the interest of speed just go through this loop once, which may not
        # entirely fill the generate section.
        break

    performance.set_length(total_steps)

    generated_sequence = performance.to_sequence(
        max_note_duration=self.max_note_duration)

    assert (generated_sequence.total_time - generate_section.end_time) <= 1e-5
    return generated_sequence
Beispiel #6
0
    def _generate(self, input_sequence, generator_options):
        if len(generator_options.input_sections) > 1:
            raise mm.SequenceGeneratorException(
                'This model supports at most one input_sections message, but got %s'
                % len(generator_options.input_sections))
        if len(generator_options.generate_sections) != 1:
            raise mm.SequenceGeneratorException(
                'This model supports only 1 generate_sections message, but got %s'
                % len(generator_options.generate_sections))

        generate_section = generator_options.generate_sections[0]
        if generator_options.input_sections:
            input_section = generator_options.input_sections[0]
            primer_sequence = mm.trim_note_sequence(input_sequence,
                                                    input_section.start_time,
                                                    input_section.end_time)
            input_start_step = mm.quantize_to_step(input_section.start_time,
                                                   self.steps_per_second,
                                                   quantize_cutoff=0.0)
        else:
            primer_sequence = input_sequence
            input_start_step = 0

        last_end_time = (max(
            n.end_time
            for n in primer_sequence.notes) if primer_sequence.notes else 0)
        if last_end_time > generate_section.start_time:
            raise mm.SequenceGeneratorException(
                'Got GenerateSection request for section that is before or equal to '
                'the end of the NoteSequence. This model can only extend sequences. '
                'Requested start time: %s, Final note end time: %s' %
                (generate_section.start_time, last_end_time))

        # Quantize the priming sequence.
        quantized_primer_sequence = mm.quantize_note_sequence_absolute(
            primer_sequence, self.steps_per_second)

        extracted_perfs, _ = performance_lib.extract_performances(
            quantized_primer_sequence,
            start_step=input_start_step,
            num_velocity_bins=self.num_velocity_bins)
        assert len(extracted_perfs) <= 1

        generate_start_step = mm.quantize_to_step(generate_section.start_time,
                                                  self.steps_per_second,
                                                  quantize_cutoff=0.0)
        # Note that when quantizing end_step, we set quantize_cutoff to 1.0 so it
        # always rounds down. This avoids generating a sequence that ends at 5.0
        # seconds when the requested end time is 4.99.
        generate_end_step = mm.quantize_to_step(generate_section.end_time,
                                                self.steps_per_second,
                                                quantize_cutoff=1.0)

        if extracted_perfs and extracted_perfs[0]:
            performance = extracted_perfs[0]
        else:
            # If no track could be extracted, create an empty track that starts at the
            # requested generate_start_step.
            performance = performance_lib.Performance(
                steps_per_second=(quantized_primer_sequence.quantization_info.
                                  steps_per_second),
                start_step=generate_start_step,
                num_velocity_bins=self.num_velocity_bins)

        # Ensure that the track extends up to the step we want to start generating.
        performance.set_length(generate_start_step - performance.start_step)

        # Extract generation arguments from generator options.
        arg_types = {
            'note_density': lambda arg: ast.literal_eval(arg.string_value),
            'pitch_histogram': lambda arg: ast.literal_eval(arg.string_value),
            'disable_conditioning':
            lambda arg: ast.literal_eval(arg.string_value),
            'temperature': lambda arg: arg.float_value,
            'beam_size': lambda arg: arg.int_value,
            'branch_factor': lambda arg: arg.int_value,
            'steps_per_iteration': lambda arg: arg.int_value
        }
        args = dict((name, value_fn(generator_options.args[name]))
                    for name, value_fn in arg_types.items()
                    if name in generator_options.args)

        # Make sure note density is present when conditioning on it and not present
        # otherwise.
        if not self.note_density_conditioning and 'note_density' in args:
            tf.logging.warning(
                'Not conditioning on note density, ignoring requested density.'
            )
            del args['note_density']
        if self.note_density_conditioning and 'note_density' not in args:
            tf.logging.warning(
                'Conditioning on note density but none requested, using default.'
            )
            args['note_density'] = [DEFAULT_NOTE_DENSITY]

        # Make sure pitch class histogram is present when conditioning on it and not
        # present otherwise.
        if not self.pitch_histogram_conditioning and 'pitch_histogram' in args:
            tf.logging.warning(
                'Not conditioning on pitch histogram, ignoring requested histogram.'
            )
            del args['pitch_histogram']
        if self.pitch_histogram_conditioning and 'pitch_histogram' not in args:
            tf.logging.warning(
                'Conditioning on pitch histogram but none requested, using default.'
            )
            args['pitch_histogram'] = [DEFAULT_PITCH_HISTOGRAM]

        # Make sure disable conditioning flag is present when conditioning is
        # optional and not present otherwise.
        if not self.optional_conditioning and 'disable_conditioning' in args:
            tf.logging.warning(
                'No optional conditioning, ignoring disable conditioning flag.'
            )
            del args['disable_conditioning']
        if self.optional_conditioning and 'disable_conditioning' not in args:
            args['disable_conditioning'] = [False]

        # If a single note density, pitch class histogram, or disable flag is
        # present, convert to list to simplify further processing.
        if (self.note_density_conditioning
                and not isinstance(args['note_density'], list)):
            args['note_density'] = [args['note_density']]
        if (self.pitch_histogram_conditioning
                and not isinstance(args['pitch_histogram'][0], list)):
            args['pitch_histogram'] = [args['pitch_histogram']]
        if (self.optional_conditioning
                and not isinstance(args['disable_conditioning'], list)):
            args['disable_conditioning'] = [args['disable_conditioning']]

        # Make sure each pitch class histogram sums to one.
        if self.pitch_histogram_conditioning:
            for i in range(len(args['pitch_histogram'])):
                total = sum(args['pitch_histogram'][i])
                if total > 0:
                    args['pitch_histogram'][i] = [
                        float(count) / total
                        for count in args['pitch_histogram'][i]
                    ]
                else:
                    tf.logging.warning(
                        'Pitch histogram is empty, using default.')
                    args['pitch_histogram'][i] = DEFAULT_PITCH_HISTOGRAM

        total_steps = performance.num_steps + (generate_end_step -
                                               generate_start_step)

        # Set up functions that map generation step to note density, pitch
        # histogram, and disable conditioning flag.
        mean_note_density = DEFAULT_NOTE_DENSITY
        if self.note_density_conditioning:
            args['note_density_fn'] = partial(
                _step_to_note_density,
                num_steps=total_steps,
                note_densities=args['note_density'])
            mean_note_density = sum(args['note_density']) / len(
                args['note_density'])
            del args['note_density']
        if self.pitch_histogram_conditioning:
            args['pitch_histogram_fn'] = partial(
                _step_to_pitch_histogram,
                num_steps=total_steps,
                pitch_histograms=args['pitch_histogram'])
            del args['pitch_histogram']
        if self.optional_conditioning:
            args['disable_conditioning_fn'] = partial(
                _step_to_disable_conditioning,
                num_steps=total_steps,
                disable_conditioning_flags=args['disable_conditioning'])
            del args['disable_conditioning']

        if not performance:
            # Primer is empty; let's just start with silence.
            performance.set_length(
                min(performance_lib.MAX_SHIFT_STEPS, total_steps))

        while performance.num_steps < total_steps:
            # Assume the average specified (or default) note density and 4 RNN steps
            # per note. Can't know for sure until generation is finished because the
            # number of notes per quantized step is variable.
            note_density = max(1.0, mean_note_density)
            steps_to_gen = total_steps - performance.num_steps
            rnn_steps_to_gen = int(
                math.ceil(4.0 * note_density * steps_to_gen /
                          self.steps_per_second))
            tf.logging.info(
                'Need to generate %d more steps for this sequence, will try asking '
                'for %d RNN steps' % (steps_to_gen, rnn_steps_to_gen))
            performance = self._model.generate_performance(
                len(performance) + rnn_steps_to_gen, performance, **args)

            if not self.fill_generate_section:
                # In the interest of speed just go through this loop once, which may not
                # entirely fill the generate section.
                break

        performance.set_length(total_steps)

        generated_sequence = performance.to_sequence(
            max_note_duration=self.max_note_duration)

        assert (generated_sequence.total_time -
                generate_section.end_time) <= 1e-5
        return generated_sequence
  def _generate(self, input_sequence, generator_options):
    if len(generator_options.input_sections) > 1:
      raise mm.SequenceGeneratorException(
          'This model supports at most one input_sections message, but got %s' %
          len(generator_options.input_sections))
    if len(generator_options.generate_sections) != 1:
      raise mm.SequenceGeneratorException(
          'This model supports only 1 generate_sections message, but got %s' %
          len(generator_options.generate_sections))

    generate_section = generator_options.generate_sections[0]
    if generator_options.input_sections:
      input_section = generator_options.input_sections[0]
      primer_sequence = mm.trim_note_sequence(
          input_sequence, input_section.start_time, input_section.end_time)
      input_start_step = mm.quantize_to_step(
          input_section.start_time, self.steps_per_second, quantize_cutoff=0.0)
    else:
      primer_sequence = input_sequence
      input_start_step = 0

    last_end_time = (max(n.end_time for n in primer_sequence.notes)
                     if primer_sequence.notes else 0)
    if last_end_time > generate_section.start_time:
      raise mm.SequenceGeneratorException(
          'Got GenerateSection request for section that is before or equal to '
          'the end of the NoteSequence. This model can only extend sequences. '
          'Requested start time: %s, Final note end time: %s' %
          (generate_section.start_time, last_end_time))

    # Quantize the priming sequence.
    quantized_primer_sequence = mm.quantize_note_sequence_absolute(
        primer_sequence, self.steps_per_second)

    extracted_perfs, _ = performance_lib.extract_performances(
        quantized_primer_sequence, start_step=input_start_step,
        num_velocity_bins=self.num_velocity_bins)
    assert len(extracted_perfs) <= 1

    generate_start_step = mm.quantize_to_step(
        generate_section.start_time, self.steps_per_second, quantize_cutoff=0.0)
    # Note that when quantizing end_step, we set quantize_cutoff to 1.0 so it
    # always rounds down. This avoids generating a sequence that ends at 5.0
    # seconds when the requested end time is 4.99.
    generate_end_step = mm.quantize_to_step(
        generate_section.end_time, self.steps_per_second, quantize_cutoff=1.0)

    if extracted_perfs and extracted_perfs[0]:
      performance = extracted_perfs[0]
    else:
      # If no track could be extracted, create an empty track that starts at the
      # requested generate_start_step.
      performance = performance_lib.Performance(
          steps_per_second=(
              quantized_primer_sequence.quantization_info.steps_per_second),
          start_step=generate_start_step,
          num_velocity_bins=self.num_velocity_bins)

    # Ensure that the track extends up to the step we want to start generating.
    performance.set_length(generate_start_step - performance.start_step)

    # Extract generation arguments from generator options.
    arg_types = {
        'note_density': lambda arg: ast.literal_eval(arg.string_value),
        'pitch_histogram': lambda arg: ast.literal_eval(arg.string_value),
        'disable_conditioning': lambda arg: ast.literal_eval(arg.string_value),
        'temperature': lambda arg: arg.float_value,
        'beam_size': lambda arg: arg.int_value,
        'branch_factor': lambda arg: arg.int_value,
        'steps_per_iteration': lambda arg: arg.int_value
    }
    args = dict((name, value_fn(generator_options.args[name]))
                for name, value_fn in arg_types.items()
                if name in generator_options.args)

    # Make sure note density is present when conditioning on it and not present
    # otherwise.
    if not self.note_density_conditioning and 'note_density' in args:
      tf.logging.warning(
          'Not conditioning on note density, ignoring requested density.')
      del args['note_density']
    if self.note_density_conditioning and 'note_density' not in args:
      tf.logging.warning(
          'Conditioning on note density but none requested, using default.')
      args['note_density'] = [DEFAULT_NOTE_DENSITY]

    # Make sure pitch class histogram is present when conditioning on it and not
    # present otherwise.
    if not self.pitch_histogram_conditioning and 'pitch_histogram' in args:
      tf.logging.warning(
          'Not conditioning on pitch histogram, ignoring requested histogram.')
      del args['pitch_histogram']
    if self.pitch_histogram_conditioning and 'pitch_histogram' not in args:
      tf.logging.warning(
          'Conditioning on pitch histogram but none requested, using default.')
      args['pitch_histogram'] = [DEFAULT_PITCH_HISTOGRAM]

    # Make sure disable conditioning flag is present when conditioning is
    # optional and not present otherwise.
    if not self.optional_conditioning and 'disable_conditioning' in args:
      tf.logging.warning(
          'No optional conditioning, ignoring disable conditioning flag.')
      del args['disable_conditioning']
    if self.optional_conditioning and 'disable_conditioning' not in args:
      args['disable_conditioning'] = [False]

    # If a single note density, pitch class histogram, or disable flag is
    # present, convert to list to simplify further processing.
    if (self.note_density_conditioning and
        not isinstance(args['note_density'], list)):
      args['note_density'] = [args['note_density']]
    if (self.pitch_histogram_conditioning and
        not isinstance(args['pitch_histogram'][0], list)):
      args['pitch_histogram'] = [args['pitch_histogram']]
    if (self.optional_conditioning and
        not isinstance(args['disable_conditioning'], list)):
      args['disable_conditioning'] = [args['disable_conditioning']]

    # Make sure each pitch class histogram sums to one.
    if self.pitch_histogram_conditioning:
      for i in range(len(args['pitch_histogram'])):
        total = sum(args['pitch_histogram'][i])
        if total > 0:
          args['pitch_histogram'][i] = [float(count) / total
                                        for count in args['pitch_histogram'][i]]
        else:
          tf.logging.warning('Pitch histogram is empty, using default.')
          args['pitch_histogram'][i] = DEFAULT_PITCH_HISTOGRAM

    total_steps = performance.num_steps + (
        generate_end_step - generate_start_step)

    # Set up functions that map generation step to note density, pitch
    # histogram, and disable conditioning flag.
    mean_note_density = DEFAULT_NOTE_DENSITY
    if self.note_density_conditioning:
      args['note_density_fn'] = partial(
          _step_to_note_density,
          num_steps=total_steps,
          note_densities=args['note_density'])
      mean_note_density = sum(args['note_density']) / len(args['note_density'])
      del args['note_density']
    if self.pitch_histogram_conditioning:
      args['pitch_histogram_fn'] = partial(
          _step_to_pitch_histogram,
          num_steps=total_steps,
          pitch_histograms=args['pitch_histogram'])
      del args['pitch_histogram']
    if self.optional_conditioning:
      args['disable_conditioning_fn'] = partial(
          _step_to_disable_conditioning,
          num_steps=total_steps,
          disable_conditioning_flags=args['disable_conditioning'])
      del args['disable_conditioning']

    if not performance:
      # Primer is empty; let's just start with silence.
      performance.set_length(min(performance_lib.MAX_SHIFT_STEPS, total_steps))

    while performance.num_steps < total_steps:
      # Assume the average specified (or default) note density and 4 RNN steps
      # per note. Can't know for sure until generation is finished because the
      # number of notes per quantized step is variable.
      note_density = max(1.0, mean_note_density)
      steps_to_gen = total_steps - performance.num_steps
      rnn_steps_to_gen = int(math.ceil(
          4.0 * note_density * steps_to_gen / self.steps_per_second))
      tf.logging.info(
          'Need to generate %d more steps for this sequence, will try asking '
          'for %d RNN steps' % (steps_to_gen, rnn_steps_to_gen))
      performance = self._model.generate_performance(
          len(performance) + rnn_steps_to_gen, performance, **args)

      if not self.fill_generate_section:
        # In the interest of speed just go through this loop once, which may not
        # entirely fill the generate section.
        break

    performance.set_length(total_steps)

    generated_sequence = performance.to_sequence(
        max_note_duration=self.max_note_duration)

    assert (generated_sequence.total_time - generate_section.end_time) <= 1e-5
    return generated_sequence
Beispiel #8
0
  def _to_tensors(self, note_sequence):
    """Converts NoteSequence to unique, one-hot tensor sequences."""
    try:
      if self._steps_per_quarter:
        quantized_sequence = mm.quantize_note_sequence(
            note_sequence, self._steps_per_quarter)
        if (mm.steps_per_bar_in_quantized_sequence(quantized_sequence) !=
            self._steps_per_bar):
          return ConverterTensors()
      else:
        quantized_sequence = mm.quantize_note_sequence_absolute(
            note_sequence, self._steps_per_second)
    except (mm.BadTimeSignatureException, mm.NonIntegerStepsPerBarException,
            mm.NegativeTimeException) as e:
      return ConverterTensors()

    if self._chord_encoding and not any(
        ta.annotation_type == CHORD_SYMBOL
        for ta in quantized_sequence.text_annotations):
      # We are conditioning on chords but sequence does not have chords. Try to
      # infer them.
      try:
        mm.infer_chords_for_sequence(quantized_sequence)
      except mm.ChordInferenceException:
        return ConverterTensors()

    event_lists, unused_stats = self._event_extractor_fn(quantized_sequence)
    if self._pad_to_total_time:
      for e in event_lists:
        e.set_length(len(e) + e.start_step, from_left=True)
        e.set_length(quantized_sequence.total_quantized_steps)
    if self._slice_steps:
      sliced_event_lists = []
      for l in event_lists:
        for i in range(self._slice_steps, len(l) + 1, self._steps_per_bar):
          sliced_event_lists.append(l[i - self._slice_steps: i])
    else:
      sliced_event_lists = event_lists

    if self._chord_encoding:
      try:
        sliced_chord_lists = chords_lib.event_list_chords(
            quantized_sequence, sliced_event_lists)
      except chords_lib.CoincidentChordsException:
        return ConverterTensors()
      sliced_event_lists = [zip(el, cl) for el, cl in zip(sliced_event_lists,
                                                          sliced_chord_lists)]

    # TODO(adarob): Consider handling the fact that different event lists can
    # be mapped to identical tensors by the encoder_decoder (e.g., Drums).

    unique_event_tuples = list(set(tuple(l) for l in sliced_event_lists))
    unique_event_tuples = self._maybe_sample_outputs(unique_event_tuples)

    if not unique_event_tuples:
      return ConverterTensors()

    control_seqs = []
    if self._chord_encoding:
      unique_event_tuples, unique_chord_tuples = zip(
          *[zip(*t) for t in unique_event_tuples if t])
      for t in unique_chord_tuples:
        try:
          chord_tokens = [self._chord_encoding.encode_event(e) for e in t]
          if self.end_token:
            # Repeat the last chord instead of using a special token; otherwise
            # the model may learn to rely on the special token to detect
            # endings.
            chord_tokens.append(chord_tokens[-1] if chord_tokens else
                                self._chord_encoding.encode_event(mm.NO_CHORD))
        except (mm.ChordSymbolException, mm.ChordEncodingException):
          return ConverterTensors()
        control_seqs.append(
            np_onehot(chord_tokens, self.control_depth, self.control_dtype))

    seqs = []
    for t in unique_event_tuples:
      seqs.append(np_onehot(
          [self._legacy_encoder_decoder.encode_event(e) for e in t] +
          ([] if self.end_token is None else [self.end_token]),
          self.output_depth, self.output_dtype))

    return ConverterTensors(inputs=seqs, outputs=seqs, controls=control_seqs)
Beispiel #9
0
  def _to_tensors(self, note_sequence):
    """Converts NoteSequence to unique, one-hot tensor sequences."""
    try:
      if self._steps_per_quarter:
        quantized_sequence = mm.quantize_note_sequence(
            note_sequence, self._steps_per_quarter)
        if (mm.steps_per_bar_in_quantized_sequence(quantized_sequence) !=
            self._steps_per_bar):
          return ConverterTensors()
      else:
        quantized_sequence = mm.quantize_note_sequence_absolute(
            note_sequence, self._steps_per_second)
    except (mm.BadTimeSignatureException, mm.NonIntegerStepsPerBarException,
            mm.NegativeTimeException) as e:
      return ConverterTensors()

    if self._chord_encoding and not any(
        ta.annotation_type == CHORD_SYMBOL
        for ta in quantized_sequence.text_annotations):
      # We are conditioning on chords but sequence does not have chords. Try to
      # infer them.
      try:
        mm.infer_chords_for_sequence(quantized_sequence)
      except mm.ChordInferenceException:
        return ConverterTensors()

    event_lists, unused_stats = self._event_extractor_fn(quantized_sequence)
    if self._pad_to_total_time:
      for e in event_lists:
        e.set_length(len(e) + e.start_step, from_left=True)
        e.set_length(quantized_sequence.total_quantized_steps)
    if self._slice_steps:
      sliced_event_lists = []
      for l in event_lists:
        for i in range(self._slice_steps, len(l) + 1, self._steps_per_bar):
          sliced_event_lists.append(l[i - self._slice_steps: i])
    else:
      sliced_event_lists = event_lists

    if self._chord_encoding:
      try:
        sliced_chord_lists = chords_lib.event_list_chords(
            quantized_sequence, sliced_event_lists)
      except chords_lib.CoincidentChordsException:
        return ConverterTensors()
      sliced_event_lists = [zip(el, cl) for el, cl in zip(sliced_event_lists,
                                                          sliced_chord_lists)]

    # TODO(adarob): Consider handling the fact that different event lists can
    # be mapped to identical tensors by the encoder_decoder (e.g., Drums).

    unique_event_tuples = list(set(tuple(l) for l in sliced_event_lists))
    unique_event_tuples = self._maybe_sample_outputs(unique_event_tuples)

    if not unique_event_tuples:
      return ConverterTensors()

    control_seqs = []
    if self._chord_encoding:
      unique_event_tuples, unique_chord_tuples = zip(
          *[zip(*t) for t in unique_event_tuples if t])
      for t in unique_chord_tuples:
        try:
          chord_tokens = [self._chord_encoding.encode_event(e) for e in t]
          if self.end_token:
            # Repeat the last chord instead of using a special token; otherwise
            # the model may learn to rely on the special token to detect
            # endings.
            chord_tokens.append(chord_tokens[-1] if chord_tokens else
                                self._chord_encoding.encode_event(mm.NO_CHORD))
        except (mm.ChordSymbolException, mm.ChordEncodingException):
          return ConverterTensors()
        control_seqs.append(
            np_onehot(chord_tokens, self.control_depth, self.control_dtype))

    seqs = []
    for t in unique_event_tuples:
      seqs.append(np_onehot(
          [self._legacy_encoder_decoder.encode_event(e) for e in t] +
          ([] if self.end_token is None else [self.end_token]),
          self.output_depth, self.output_dtype))

    return ConverterTensors(inputs=seqs, outputs=seqs, controls=control_seqs)