Beispiel #1
0
def detect_blobs_blocks(filename_base, image5d, offset, size, channels,
                        verify=False, save_dfs=True, full_roi=False,
                        coloc=False):
    """Detect blobs by block processing of a large image.
    
    All channels are processed in the same blocks.
    
    Args:
        filename_base: Base path to use file output.
        image5d: Large image to process as a Numpy array of t,z,y,x,[c]
        offset: Sub-image offset given as coordinates in z,y,x.
        size: Sub-image shape given in z,y,x.
        channels (Sequence[int]): Sequence of channels, where None detects
            in all channels.
        verify: True to verify detections against truth database; defaults 
            to False.
        save_dfs: True to save data frames to file; defaults to True.
        full_roi (bool): True to treat ``image5d`` as the full ROI; defaults
            to False.
        coloc (bool): True to perform blob co-localizations; defaults to False.
    
    Returns:
        tuple[int, int, int], str, :class:`magmap.cv.detector.Blobs`:
        Accuracy metrics from :class:`magmap.cv.detector.verify_rois`,
        feedback message from this same function, and detected blobs.
    
    """
    time_start = time()
    subimg_path_base = filename_base
    if size is None or offset is None:
        # uses the entire stack if no size or offset specified
        size = image5d.shape[1:4]
        offset = (0, 0, 0)
    else:
        # get base path for sub-image
        subimg_path_base = naming.make_subimage_name(
            filename_base, offset, size)
    filename_blobs = libmag.combine_paths(subimg_path_base, config.SUFFIX_BLOBS)
    
    # get ROI for given region, including all channels
    if full_roi:
        # treat the full image as the ROI
        roi = image5d[0]
    else:
        roi = plot_3d.prepare_subimg(image5d, offset, size)
    num_chls_roi = 1 if len(roi.shape) < 4 else roi.shape[3]
    if num_chls_roi < 2:
        coloc = False
        print("Unable to co-localize as image has only 1 channel")
    
    # prep chunking ROI into sub-ROIs with size based on segment_size, scaling
    # by physical units to make more independent of resolution; use profile
    # from first channel to be processed for block settings
    time_detection_start = time()
    settings = config.get_roi_profile(channels[0])
    print("Profile for block settings:", settings[settings.NAME_KEY])
    sub_roi_slices, sub_rois_offsets, denoise_max_shape, exclude_border, \
        tol, overlap_base, overlap, overlap_padding = setup_blocks(
            settings, roi.shape)
    
    # TODO: option to distribute groups of sub-ROIs to different servers 
    # for blob detection
    seg_rois = StackDetector.detect_blobs_sub_rois(
        roi, sub_roi_slices, sub_rois_offsets, denoise_max_shape,
        exclude_border, coloc, channels)
    detection_time = time() - time_detection_start
    print("blob detection time (s):", detection_time)
    
    # prune blobs in overlapping portions of sub-ROIs
    time_pruning_start = time()
    segments_all, df_pruning = StackPruner.prune_blobs_mp(
        roi, seg_rois, overlap, tol, sub_roi_slices, sub_rois_offsets, channels,
        overlap_padding)
    pruning_time = time() - time_pruning_start
    print("blob pruning time (s):", pruning_time)
    #print("maxes:", np.amax(segments_all, axis=0))
    
    # get weighted mean of ratios
    if df_pruning is not None:
        print("\nBlob pruning ratios:")
        path_pruning = "blob_ratios.csv" if save_dfs else None
        df_pruning_all = df_io.data_frames_to_csv(
            df_pruning, path_pruning, show=" ")
        cols = df_pruning_all.columns.tolist()
        blob_pruning_means = {}
        if "blobs" in cols:
            blobs_unpruned = df_pruning_all["blobs"]
            num_blobs_unpruned = np.sum(blobs_unpruned)
            for col in cols[1:]:
                blob_pruning_means["mean_{}".format(col)] = [
                    np.sum(np.multiply(df_pruning_all[col], blobs_unpruned)) 
                    / num_blobs_unpruned]
            path_pruning_means = "blob_ratios_means.csv" if save_dfs else None
            df_pruning_means = df_io.dict_to_data_frame(
                blob_pruning_means, path_pruning_means, show=" ")
        else:
            print("no blob ratios found")
    
    '''# report any remaining duplicates
    np.set_printoptions(linewidth=500, threshold=10000000)
    print("all blobs (len {}):".format(len(segments_all)))
    sort = np.lexsort(
        (segments_all[:, 2], segments_all[:, 1], segments_all[:, 0]))
    blobs = segments_all[sort]
    print(blobs)
    print("checking for duplicates in all:")
    print(detector.remove_duplicate_blobs(blobs, slice(0, 3)))
    '''
    
    stats_detection = None
    fdbk = None
    colocs = None
    if segments_all is not None:
        # remove the duplicated elements that were used for pruning
        detector.replace_rel_with_abs_blob_coords(segments_all)
        if coloc:
            colocs = segments_all[:, 10:10+num_chls_roi].astype(np.uint8)
        # remove absolute coordinate and any co-localization columns
        segments_all = detector.remove_abs_blob_coords(segments_all)
        
        # compare detected blobs with truth blobs
        # TODO: assumes ground truth is relative to any ROI offset,
        # but should make customizable
        if verify:
            stats_detection, fdbk = verifier.verify_stack(
                filename_base, subimg_path_base, settings, segments_all,
                channels, overlap_base)
    
    if config.save_subimg:
        subimg_base_path = libmag.combine_paths(
            subimg_path_base, config.SUFFIX_SUBIMG)
        if (isinstance(config.image5d, np.memmap) and 
                config.image5d.filename == os.path.abspath(subimg_base_path)):
            # file at sub-image save path may have been opened as a memmap
            # file, in which case saving would fail
            libmag.warn("{} is currently open, cannot save sub-image"
                        .format(subimg_base_path))
        else:
            # write sub-image, which is in ROI (3D) format
            with open(subimg_base_path, "wb") as f:
                np.save(f, roi)

    # store blobs in Blobs instance
    # TODO: consider separating into blobs and blobs metadata archives
    blobs = detector.Blobs(
        segments_all, colocalizations=colocs, path=filename_blobs)
    blobs.resolutions = config.resolutions
    blobs.basename = os.path.basename(config.filename)
    blobs.roi_offset = offset
    blobs.roi_size = size
    
    # whole image benchmarking time
    times = (
        [detection_time], 
        [pruning_time], 
        time() - time_start)
    times_dict = {}
    for key, val in zip(StackTimes, times):
        times_dict[key] = val
    if segments_all is None:
        print("\nNo blobs detected")
    else:
        print("\nTotal blobs found:", len(segments_all))
        detector.show_blobs_per_channel(segments_all)
    print("\nTotal detection processing times (s):")
    path_times = "stack_detection_times.csv" if save_dfs else None
    df_io.dict_to_data_frame(times_dict, path_times, show=" ")
    
    return stats_detection, fdbk, blobs
Beispiel #2
0
def setup_images(path: str,
                 series: Optional[int] = None,
                 offset: Optional[Sequence[int]] = None,
                 size: Optional[Sequence[int]] = None,
                 proc_type: Optional["config.ProcessTypes"] = None,
                 allow_import: bool = True,
                 fallback_main_img: bool = True):
    """Sets up an image and all associated images and metadata.

    Paths for related files such as registered images will generally be
    constructed from ``path``. If :attr:`config.prefix` is set, it will
    be used in place of ``path`` for registered labels.
    
    Args:
        path: Path to image from which MagellanMapper-style paths will 
            be generated.
        series: Image series number; defaults to None.
        offset: Sub-image offset given in z,y,x; defaults to None.
        size: Sub-image shape given in z,y,x; defaults to None.
        proc_type: Processing type.
        allow_import: True to allow importing the image if it
            cannot be loaded; defaults to True.
        fallback_main_img: True to fall back to loading a registered image
            if possible if the main image could not be loaded; defaults to True.
    
    """
    def add_metadata():
        # override metadata set from command-line metadata args if available
        md = {
            config.MetaKeys.RESOLUTIONS:
            config.meta_dict[config.MetaKeys.RESOLUTIONS],
            config.MetaKeys.MAGNIFICATION:
            config.meta_dict[config.MetaKeys.MAGNIFICATION],
            config.MetaKeys.ZOOM:
            config.meta_dict[config.MetaKeys.ZOOM],
            config.MetaKeys.SHAPE:
            config.meta_dict[config.MetaKeys.SHAPE],
            config.MetaKeys.DTYPE:
            config.meta_dict[config.MetaKeys.DTYPE],
        }
        for key, val in md.items():
            if val is not None:
                # explicitly set metadata takes precedence over extracted vals
                import_md[key] = val

        res = import_md[config.MetaKeys.RESOLUTIONS]
        if res is None:
            # default to 1 for x,y,z since image resolutions are required
            res = [1] * 3
            import_md[config.MetaKeys.RESOLUTIONS] = res
            _logger.warn("No image resolutions found. Defaulting to: %s", res)

    # LOAD MAIN IMAGE

    # reset image5d
    config.image5d = None
    config.image5d_is_roi = False
    config.img5d = Image5d()
    load_subimage = offset is not None and size is not None
    config.resolutions = None

    # reset label images
    config.labels_img = None
    config.labels_img_sitk = None
    config.labels_img_orig = None
    config.borders_img = None
    config.labels_meta = None
    config.labels_ref = None

    # reset blobs
    config.blobs = None

    filename_base = importer.filename_to_base(path, series)
    subimg_base = None
    blobs = None

    # registered images set to load
    atlas_suffix = config.reg_suffixes[config.RegSuffixes.ATLAS]
    annotation_suffix = config.reg_suffixes[config.RegSuffixes.ANNOTATION]
    borders_suffix = config.reg_suffixes[config.RegSuffixes.BORDERS]

    if load_subimage and not config.save_subimg:
        # load a saved sub-image file if available and not set to save one
        subimg_base = naming.make_subimage_name(filename_base, offset, size)
        filename_subimg = libmag.combine_paths(subimg_base,
                                               config.SUFFIX_SUBIMG)

        try:
            # load sub-image if available
            config.image5d = np.load(filename_subimg, mmap_mode="r")
            config.image5d = importer.roi_to_image5d(config.image5d)
            config.image5d_is_roi = True
            config.img5d.img = config.image5d
            config.img5d.path_img = filename_subimg
            config.img5d.img_io = config.LoadIO.NP
            config.img5d.subimg_offset = offset
            config.img5d.subimg_size = size
            print("Loaded sub-image from {} with shape {}".format(
                filename_subimg, config.image5d.shape))

            # after loading sub-image, load original image's metadata
            # for essential data such as vmin/vmax; will only warn if
            # fails to load since metadata could be specified elsewhere
            _, orig_info = importer.make_filenames(path, series)
            print("load original image metadata from:", orig_info)
            importer.load_metadata(orig_info)
        except IOError:
            print("Ignored sub-image file from {} as unable to load".format(
                filename_subimg))

    if config.load_data[config.LoadData.BLOBS] or proc_type in (
            config.ProcessTypes.LOAD, config.ProcessTypes.COLOC_MATCH,
            config.ProcessTypes.EXPORT_ROIS, config.ProcessTypes.EXPORT_BLOBS):
        # load a blobs archive
        blobs = detector.Blobs()
        try:
            if subimg_base:
                try:
                    # load blobs generated from sub-image
                    config.blobs = blobs.load_blobs(
                        img_to_blobs_path(subimg_base))
                except (FileNotFoundError, KeyError):
                    # fallback to loading from full image blobs and getting
                    # a subset, shifting them relative to sub-image offset
                    print("Unable to load blobs file based on {}, will try "
                          "from {}".format(subimg_base, filename_base))
                    config.blobs = blobs.load_blobs(
                        img_to_blobs_path(filename_base))
                    blobs.blobs, _ = detector.get_blobs_in_roi(blobs.blobs,
                                                               offset,
                                                               size,
                                                               reverse=False)
                    detector.Blobs.shift_blob_rel_coords(
                        blobs.blobs, np.multiply(offset, -1))
            else:
                # load full image blobs
                config.blobs = blobs.load_blobs(
                    img_to_blobs_path(filename_base))
        except (FileNotFoundError, KeyError) as e2:
            print("Unable to load blobs file")
            if proc_type in (config.ProcessTypes.LOAD,
                             config.ProcessTypes.EXPORT_BLOBS):
                # blobs expected but not found
                raise e2

    if path and config.image5d is None and not atlas_suffix:
        # load or import the main image stack
        print("Loading main image")
        try:
            path_lower = path.lower()
            import_only = proc_type is config.ProcessTypes.IMPORT_ONLY
            if path_lower.endswith(sitk_io.EXTS_3D):
                # load format supported by SimpleITK and prepend time axis;
                # if 2D, convert to 3D
                img5d = sitk_io.read_sitk_files(path, make_3d=True)
            elif not import_only and path_lower.endswith((".tif", ".tiff")):
                # load TIF file directly
                img5d, meta = read_tif(path)
                config.resolutions = meta[config.MetaKeys.RESOLUTIONS]
            else:
                # load or import from MagellanMapper Numpy format
                img5d = None
                if not import_only:
                    # load previously imported image
                    img5d = importer.read_file(path, series)
                if allow_import and (img5d is None or img5d.img is None):
                    # import image; will re-import over any existing image file
                    if os.path.isdir(path) and all(
                        [r is None for r in config.reg_suffixes.values()]):
                        # import directory of single plane images to single
                        # stack if no register suffixes are set
                        chls, import_md = importer.setup_import_dir(path)
                        add_metadata()
                        prefix = config.prefix
                        if not prefix:
                            prefix = os.path.join(
                                os.path.dirname(path),
                                importer.DEFAULT_IMG_STACK_NAME)
                        img5d = importer.import_planes_to_stack(
                            chls, prefix, import_md)
                    elif import_only:
                        # import multi-plane image
                        chls, import_path = importer.setup_import_multipage(
                            path)
                        prefix = config.prefix if config.prefix else import_path
                        import_md = importer.setup_import_metadata(
                            chls, config.channel, series)
                        add_metadata()
                        img5d = importer.import_multiplane_images(
                            chls,
                            prefix,
                            import_md,
                            series,
                            channel=config.channel)
            if img5d is not None:
                # set loaded main image in config
                config.img5d = img5d
                config.image5d = config.img5d.img
        except FileNotFoundError as e:
            _logger.exception(e)
            _logger.info("Could not load %s", path)

    if config.metadatas and config.metadatas[0]:
        # assign metadata from alternate file if given to supersede settings
        # for any loaded image5d
        # TODO: access metadata directly from given image5d's dict to allow
        # loading multiple image5d images simultaneously
        importer.assign_metadata(config.metadatas[0])

    # main image is currently required since many parameters depend on it
    if fallback_main_img and atlas_suffix is None and config.image5d is None:
        # fallback to atlas if main image not already loaded
        atlas_suffix = config.RegNames.IMG_ATLAS.value
        _logger.info(
            "Main image is not set, falling back to registered image with "
            "suffix %s", atlas_suffix)
    # use prefix to get images registered to a different image, eg a
    # downsampled version, or a different version of registered images
    path = config.prefix if config.prefix else path
    if path and atlas_suffix is not None:
        try:
            # will take the place of any previously loaded image5d
            config.img5d = sitk_io.read_sitk_files(path,
                                                   atlas_suffix,
                                                   make_3d=True)
            config.image5d = config.img5d.img
        except FileNotFoundError as e:
            print(e)

    # load metadata related to the labels image
    config.labels_metadata = labels_meta.LabelsMeta(
        f"{path}." if config.prefix else path).load()

    # load labels reference file, prioritizing path given by user
    # and falling back to any extension matching PATH_LABELS_REF
    path_labels_refs = [config.load_labels]
    labels_path_ref = config.labels_metadata.path_ref
    if labels_path_ref:
        path_labels_refs.append(labels_path_ref)
    labels_ref = None
    for ref in path_labels_refs:
        if not ref: continue
        try:
            # load labels reference file
            labels_ref = ontology.LabelsRef(ref).load()
            if labels_ref.ref_lookup is not None:
                config.labels_ref = labels_ref
                _logger.debug("Loaded labels reference file from %s", ref)
                break
        except (FileNotFoundError, KeyError):
            pass
    if path_labels_refs and (labels_ref is None
                             or labels_ref.ref_lookup is None):
        # warn if labels path given but none found
        _logger.warn(
            "Unable to load labels reference file from '%s', skipping",
            path_labels_refs)

    if annotation_suffix is not None:
        try:
            # load labels image
            # TODO: need to support multichannel labels images
            img5d, config.labels_img_sitk = sitk_io.read_sitk_files(
                path, annotation_suffix, True, True)
            config.labels_img = img5d.img[0]
        except FileNotFoundError as e:
            print(e)
            if config.image5d is not None:
                # create a blank labels images for custom annotation; colormap
                # can be generated for the original labels loaded below
                config.labels_img = np.zeros(config.image5d.shape[1:4],
                                             dtype=int)
                print("Created blank labels image from main image")
        if config.image5d is not None and config.labels_img is not None:
            # set up scaling factors by dimension between intensity and
            # labels images
            config.labels_scaling = importer.calc_scaling(
                config.image5d, config.labels_img)

    if borders_suffix is not None:
        # load borders image, which can also be another labels image
        try:
            config.borders_img = sitk_io.read_sitk_files(path,
                                                         borders_suffix,
                                                         make_3d=True).img[0]
        except FileNotFoundError as e:
            print(e)

    if config.atlas_labels[config.AtlasLabels.ORIG_COLORS]:
        labels_orig_ids = config.labels_metadata.region_ids_orig
        if labels_orig_ids is None:
            if config.load_labels is not None:
                # load original labels image from same directory as ontology
                # file for consistent ID-color mapping, even if labels are missing
                try:
                    config.labels_img_orig = sitk_io.load_registered_img(
                        config.load_labels, config.RegNames.IMG_LABELS.value)
                except FileNotFoundError as e:
                    print(e)
            if config.labels_img is not None and config.labels_img_orig is None:
                _logger.warn(
                    "Could not load original labels image IDs; colors may "
                    "differ from the original image")

    load_rot90 = config.roi_profile["load_rot90"]
    if load_rot90 and config.image5d is not None:
        # rotate main image specified num of times x90deg after loading since
        # need to rotate images output by deep learning toolkit
        config.image5d = np.rot90(config.image5d, load_rot90, (2, 3))

    if (config.image5d is not None and load_subimage
            and not config.image5d_is_roi):
        # crop full image to bounds of sub-image
        config.image5d = plot_3d.prepare_subimg(config.image5d, offset,
                                                size)[None]
        config.image5d_is_roi = True

    # add any additional image5d thresholds for multichannel images, such
    # as those loaded without metadata for these settings
    colormaps.setup_cmaps()
    num_channels = get_num_channels(config.image5d)
    config.near_max = libmag.pad_seq(config.near_max, num_channels, -1)
    config.near_min = libmag.pad_seq(config.near_min, num_channels, 0)
    config.vmax_overview = libmag.pad_seq(config.vmax_overview, num_channels)
    colormaps.setup_colormaps(num_channels)

    if config.labels_img is not None:
        # make discrete colormap for labels image
        config.cmap_labels = colormaps.setup_labels_cmap(config.labels_img)

    if (blobs is not None and blobs.blobs is not None
            and config.img5d.img is not None and blobs.roi_size is not None):
        # scale blob coordinates to main image if shapes differ
        scaling = np.divide(config.img5d.img.shape[1:4], blobs.roi_size)
        # scale radius by mean of other dimensions' scaling
        scaling = np.append(scaling, np.mean(scaling))
        if not np.all(scaling == 1):
            _logger.debug("Scaling blobs to main image by factor: %s", scaling)
            blobs.blobs[:, :4] = ontology.scale_coords(blobs.blobs[:, :4],
                                                       scaling)
        blobs.scaling = scaling
Beispiel #3
0
def process_file(
    path: str,
    proc_type: Enum,
    proc_val: Optional[Any] = None,
    series: Optional[int] = None,
    subimg_offset: Optional[List[int]] = None,
    subimg_size: Optional[List[int]] = None,
    roi_offset: Optional[List[int]] = None,
    roi_size: Optional[List[int]] = None
) -> Tuple[Optional[Any], Optional[str]]:
    """Processes a single image file non-interactively.

    Assumes that the image has already been set up.
    
    Args:
        path: Path to image from which MagellanMapper-style paths will 
            be generated.
        proc_type: Processing type, which should be a one of
            :class:`config.ProcessTypes`.
        proc_val: Processing value associated with ``proc_type``; defaults to
            None.
        series: Image series number; defaults to None.
        subimg_offset: Sub-image offset as (z,y,x) to load; defaults to None.
        subimg_size: Sub-image size as (z,y,x) to load; defaults to None.
        roi_offset: Region of interest offset as (x, y, z) to process;
            defaults to None.
        roi_size: Region of interest size of region to process, given as
            ``(x, y, z)``; defaults to None.
    
    Returns:
        Tuple of stats from processing, or None if no stats, and 
        text feedback from the processing, or None if no feedback.
    """
    # PROCESS BY TYPE
    stats = None
    fdbk = None
    filename_base = importer.filename_to_base(path, series)

    print("{}\n".format("-" * 80))
    if proc_type is config.ProcessTypes.LOAD:
        # loading completed
        return None, None

    elif proc_type is config.ProcessTypes.LOAD:
        # already imported so does nothing
        print("imported {}, will exit".format(path))

    elif proc_type is config.ProcessTypes.EXPORT_ROIS:
        # export ROIs; assumes that info_proc was already loaded to
        # give smaller region from which smaller ROIs from the truth DB
        # will be extracted
        from magmap.io import export_rois
        db = config.db if config.truth_db is None else config.truth_db
        export_path = naming.make_subimage_name(filename_base, subimg_offset,
                                                subimg_size)
        export_rois.export_rois(db, config.image5d, config.channel,
                                export_path,
                                config.plot_labels[config.PlotLabels.PADDING],
                                config.unit_factor, config.truth_db_mode,
                                os.path.basename(export_path))

    elif proc_type is config.ProcessTypes.TRANSFORM:
        # transpose, rescale, and/or resize whole large image
        transformer.transpose_img(
            path,
            series,
            plane=config.plane,
            rescale=config.transform[config.Transforms.RESCALE],
            target_size=config.roi_size)

    elif proc_type in (config.ProcessTypes.EXTRACT,
                       config.ProcessTypes.ANIMATED):
        # generate animated GIF or extract single plane
        export_stack.stack_to_img(config.filenames, roi_offset, roi_size,
                                  series, subimg_offset, subimg_size,
                                  proc_type is config.ProcessTypes.ANIMATED,
                                  config.suffix)

    elif proc_type is config.ProcessTypes.EXPORT_BLOBS:
        # export blobs to CSV file
        from magmap.io import export_rois
        export_rois.blobs_to_csv(config.blobs.blobs, filename_base)

    elif proc_type in (config.ProcessTypes.DETECT,
                       config.ProcessTypes.DETECT_COLOC):
        # detect blobs in the full image, +/- co-localization
        coloc = proc_type is config.ProcessTypes.DETECT_COLOC
        stats, fdbk, _ = stack_detect.detect_blobs_stack(
            filename_base, subimg_offset, subimg_size, coloc)

    elif proc_type is config.ProcessTypes.COLOC_MATCH:
        if config.blobs is not None and config.blobs.blobs is not None:
            # colocalize blobs in separate channels by matching blobs
            shape = subimg_size
            if shape is None:
                # get shape from loaded image, falling back to its metadata
                if config.image5d is not None:
                    shape = config.image5d.shape[1:]
                else:
                    shape = config.img5d.meta[config.MetaKeys.SHAPE][1:]
            matches = colocalizer.StackColocalizer.colocalize_stack(
                shape, config.blobs.blobs)
            # insert matches into database
            colocalizer.insert_matches(config.db, matches)
        else:
            print("No blobs loaded to colocalize, skipping")

    elif proc_type in (config.ProcessTypes.EXPORT_PLANES,
                       config.ProcessTypes.EXPORT_PLANES_CHANNELS):
        # export each plane as a separate image file
        export_stack.export_planes(
            config.image5d, config.savefig, config.channel,
            proc_type is config.ProcessTypes.EXPORT_PLANES_CHANNELS)

    elif proc_type is config.ProcessTypes.EXPORT_RAW:
        # export the main image as a raw data file
        out_path = libmag.combine_paths(config.filename, ".raw", sep="")
        libmag.backup_file(out_path)
        np_io.write_raw_file(config.image5d, out_path)

    elif proc_type is config.ProcessTypes.EXPORT_TIF:
        # export the main image as a TIF files for each channel
        np_io.write_tif(config.image5d, config.filename)

    elif proc_type is config.ProcessTypes.PREPROCESS:
        # pre-process a whole image and save to file
        # TODO: consider chunking option for larger images
        out_path = config.prefix
        if not out_path:
            out_path = libmag.insert_before_ext(config.filename, "_preproc")
        transformer.preprocess_img(config.image5d, proc_val, config.channel,
                                   out_path)

    return stats, fdbk
Beispiel #4
0
def setup_images(path=None, series=None, offset=None, size=None,
                 proc_mode=None, allow_import=True):
    """Sets up an image and all associated images and metadata.

    Paths for related files such as registered images will generally be
    constructed from ``path``. If :attr:`config.prefix` is set, it will
    be used in place of ``path`` for registered labels.
    
    Args:
        path (str): Path to image from which MagellanMapper-style paths will 
            be generated.
        series (int): Image series number; defaults to None.
        offset (List[int]): Sub-image offset given in z,y,x; defaults to None.
        size (List[int]): Sub-image shape given in z,y,x; defaults to None.
        proc_mode (str): Processing mode, which should be a key in 
            :class:`config.ProcessTypes`, case-insensitive; defaults to None.
        allow_import (bool): True to allow importing the image if it
            cannot be loaded; defaults to True.
    
    """
    def add_metadata():
        # override metadata set from command-line metadata args if available
        md = {
            config.MetaKeys.RESOLUTIONS: config.meta_dict[
                config.MetaKeys.RESOLUTIONS],
            config.MetaKeys.MAGNIFICATION: config.meta_dict[
                config.MetaKeys.MAGNIFICATION],
            config.MetaKeys.ZOOM: config.meta_dict[config.MetaKeys.ZOOM],
            config.MetaKeys.SHAPE: config.meta_dict[config.MetaKeys.SHAPE],
            config.MetaKeys.DTYPE: config.meta_dict[config.MetaKeys.DTYPE],
        }
        for key, val in md.items():
            if val is not None:
                # explicitly set metadata takes precedence over extracted vals
                import_md[key] = val
    
    # LOAD MAIN IMAGE
    
    # reset image5d
    config.image5d = None
    config.image5d_is_roi = False
    config.img5d = Image5d()
    load_subimage = offset is not None and size is not None
    config.resolutions = None
    
    # reset label images
    config.labels_img = None
    config.labels_img_sitk = None
    config.borders_img = None
    
    # reset blobs
    config.blobs = None

    filename_base = importer.filename_to_base(path, series)
    subimg_base = None
    blobs = None

    if load_subimage and not config.save_subimg:
        # load a saved sub-image file if available and not set to save one
        subimg_base = naming.make_subimage_name(
            filename_base, offset, size)
        filename_subimg = libmag.combine_paths(
            subimg_base, config.SUFFIX_SUBIMG)

        try:
            # load sub-image if available
            config.image5d = np.load(filename_subimg, mmap_mode="r")
            config.image5d = importer.roi_to_image5d(config.image5d)
            config.image5d_is_roi = True
            config.img5d.img = config.image5d
            config.img5d.path_img = filename_subimg
            config.img5d.img_io = config.LoadIO.NP
            config.img5d.subimg_offset = offset
            config.img5d.subimg_size = size
            print("Loaded sub-image from {} with shape {}"
                  .format(filename_subimg, config.image5d.shape))

            # after loading sub-image, load original image's metadata
            # for essential data such as vmin/vmax; will only warn if
            # fails to load since metadata could be specified elsewhere
            _, orig_info = importer.make_filenames(path, series)
            print("load original image metadata from:", orig_info)
            importer.load_metadata(orig_info)
        except IOError:
            print("Ignored sub-image file from {} as unable to load"
                  .format(filename_subimg))

    proc_type = libmag.get_enum(proc_mode, config.ProcessTypes)
    if config.load_data[config.LoadData.BLOBS] or proc_type in (
            config.ProcessTypes.LOAD,
            config.ProcessTypes.COLOC_MATCH,
            config.ProcessTypes.EXPORT_ROIS,
            config.ProcessTypes.EXPORT_BLOBS,
            config.ProcessTypes.DETECT):
        # load a blobs archive
        blobs = detector.Blobs()
        try:
            if subimg_base:
                try:
                    # load blobs generated from sub-image
                    config.blobs = blobs.load_blobs(
                        img_to_blobs_path(subimg_base))
                except (FileNotFoundError, KeyError):
                    # fallback to loading from full image blobs and getting
                    # a subset, shifting them relative to sub-image offset
                    print("Unable to load blobs file based on {}, will try "
                          "from {}".format(subimg_base, filename_base))
                    config.blobs = blobs.load_blobs(
                        img_to_blobs_path(filename_base))
                    blobs.blobs, _ = detector.get_blobs_in_roi(
                        blobs.blobs, offset, size, reverse=False)
                    detector.shift_blob_rel_coords(
                        blobs.blobs, np.multiply(offset, -1))
            else:
                # load full image blobs
                config.blobs = blobs.load_blobs(
                    img_to_blobs_path(filename_base))
        except (FileNotFoundError, KeyError) as e2:
            print("Unable to load blobs file")
            if proc_type in (
                    config.ProcessTypes.LOAD, config.ProcessTypes.EXPORT_BLOBS):
                # blobs expected but not found
                raise e2
    
    if path and config.image5d is None:
        # load or import the main image stack
        print("Loading main image")
        try:
            if path.endswith(sitk_io.EXTS_3D):
                # attempt to format supported by SimpleITK and prepend time axis
                config.image5d = sitk_io.read_sitk_files(path)[None]
                config.img5d.img = config.image5d
                config.img5d.path_img = path
                config.img5d.img_io = config.LoadIO.SITK
            else:
                # load or import from MagellanMapper Numpy format
                import_only = proc_type is config.ProcessTypes.IMPORT_ONLY
                img5d = None
                if not import_only:
                    # load previously imported image
                    img5d = importer.read_file(path, series)
                if allow_import:
                    # re-import over existing image or import new image
                    if os.path.isdir(path) and all(
                            [r is None for r in config.reg_suffixes.values()]):
                        # import directory of single plane images to single
                        # stack if no register suffixes are set
                        chls, import_md = importer.setup_import_dir(path)
                        add_metadata()
                        prefix = config.prefix
                        if not prefix:
                            prefix = os.path.join(
                                os.path.dirname(path),
                                importer.DEFAULT_IMG_STACK_NAME)
                        img5d = importer.import_planes_to_stack(
                            chls, prefix, import_md)
                    elif import_only or img5d is None:
                        # import multi-plane image
                        chls, import_path = importer.setup_import_multipage(
                            path)
                        prefix = config.prefix if config.prefix else import_path
                        import_md = importer.setup_import_metadata(
                            chls, config.channel, series)
                        add_metadata()
                        img5d = importer.import_multiplane_images(
                            chls, prefix, import_md, series,
                            channel=config.channel)
                if img5d is not None:
                    # set loaded main image in config
                    config.img5d = img5d
                    config.image5d = config.img5d.img
        except FileNotFoundError as e:
            print(e)
            print("Could not load {}, will fall back to any associated "
                  "registered image".format(path))
    
    if config.metadatas and config.metadatas[0]:
        # assign metadata from alternate file if given to supersede settings
        # for any loaded image5d
        # TODO: access metadata directly from given image5d's dict to allow
        # loading multiple image5d images simultaneously
        importer.assign_metadata(config.metadatas[0])
    
    # main image is currently required since many parameters depend on it
    atlas_suffix = config.reg_suffixes[config.RegSuffixes.ATLAS]
    if atlas_suffix is None and config.image5d is None:
        # fallback to atlas if main image not already loaded
        atlas_suffix = config.RegNames.IMG_ATLAS.value
        print("main image is not set, falling back to registered "
              "image with suffix", atlas_suffix)
    # use prefix to get images registered to a different image, eg a
    # downsampled version, or a different version of registered images
    path = config.prefix if config.prefix else path
    if path and atlas_suffix is not None:
        try:
            # will take the place of any previously loaded image5d
            config.image5d = sitk_io.read_sitk_files(
                path, reg_names=atlas_suffix)[None]
            config.img5d.img = config.image5d
            config.img5d.img_io = config.LoadIO.SITK
        except FileNotFoundError as e:
            print(e)
    
    annotation_suffix = config.reg_suffixes[config.RegSuffixes.ANNOTATION]
    if annotation_suffix is not None:
        try:
            # load labels image
            # TODO: need to support multichannel labels images
            config.labels_img, config.labels_img_sitk = sitk_io.read_sitk_files(
                path, reg_names=annotation_suffix, return_sitk=True)
        except FileNotFoundError as e:
            print(e)
            if config.image5d is not None:
                # create a blank labels images for custom annotation; colormap
                # can be generated for the original labels loaded below
                config.labels_img = np.zeros(
                    config.image5d.shape[1:4], dtype=int)
                print("Created blank labels image from main image")
        if config.image5d is not None and config.labels_img is not None:
            # set up scaling factors by dimension between intensity and
            # labels images
            config.labels_scaling = importer.calc_scaling(
                config.image5d, config.labels_img)
        try:
            if config.load_labels is not None:
                # load labels reference file
                labels_ref = ontology.load_labels_ref(config.load_labels)
                if isinstance(labels_ref, pd.DataFrame):
                    # parse CSV files loaded into data frame
                    config.labels_ref_lookup = ontology.create_lookup_pd(
                        labels_ref)
                else:
                    # parse dict from ABA JSON file
                    config.labels_ref_lookup = (
                        ontology.create_aba_reverse_lookup(labels_ref))
        except FileNotFoundError as e:
            print(e)
    
    borders_suffix = config.reg_suffixes[config.RegSuffixes.BORDERS]
    if borders_suffix is not None:
        # load borders image, which can also be another labels image
        try:
            config.borders_img = sitk_io.read_sitk_files(
                path, reg_names=borders_suffix)
        except FileNotFoundError as e:
            print(e)
    
    if (config.atlas_labels[config.AtlasLabels.ORIG_COLORS]
            and config.load_labels is not None):
        # load original labels image from same directory as ontology
        # file for consistent ID-color mapping, even if labels are missing
        try:
            config.labels_img_orig = sitk_io.load_registered_img(
                config.load_labels, config.RegNames.IMG_LABELS.value)
        except FileNotFoundError as e:
            print(e)
            libmag.warn(
                "could not load original labels image; colors may differ"
                "differ from it")
    
    load_rot90 = config.roi_profile["load_rot90"]
    if load_rot90 and config.image5d is not None:
        # rotate main image specified num of times x90deg after loading since 
        # need to rotate images output by deep learning toolkit
        config.image5d = np.rot90(config.image5d, load_rot90, (2, 3))

    if (config.image5d is not None and load_subimage
            and not config.image5d_is_roi):
        # crop full image to bounds of sub-image
        config.image5d = plot_3d.prepare_subimg(
            config.image5d, offset, size)[None]
        config.image5d_is_roi = True

    # add any additional image5d thresholds for multichannel images, such 
    # as those loaded without metadata for these settings
    colormaps.setup_cmaps()
    num_channels = get_num_channels(config.image5d)
    config.near_max = libmag.pad_seq(config.near_max, num_channels, -1)
    config.near_min = libmag.pad_seq(config.near_min, num_channels, 0)
    config.vmax_overview = libmag.pad_seq(
        config.vmax_overview, num_channels)
    colormaps.setup_colormaps(num_channels)
    
    if config.labels_img is not None:
        # make discrete colormap for labels image
        config.cmap_labels = colormaps.setup_labels_cmap(config.labels_img)
    
    if (blobs is not None and blobs.blobs is not None
            and config.img5d.img is not None):
        # scale blob coordinates to main image if shapes differ
        scaling = np.divide(config.img5d.img.shape[1:4], blobs.roi_size)
        if not np.all(scaling == 1):
            print("Scaling blobs to main image by factor:", scaling)
            blobs.blobs[:, :3] = ontology.scale_coords(
                blobs.blobs[:, :3], scaling)