def main(df): df = df.reset_index("date", drop = True) df = base1.main(df) for each in ["ta_ROC_5","ta_WILLR_2", "ta_ROC_7", "ta_WILLR_7", "ta_WILLR_5", "ta_STOCHRSI_slowd_28_5_3", "ta_NATR_28"]: for i in [1, 2, 5, 7, 14]: df["%s-shift-%d" % (each, i)] = df[each].shift(i) return df
def main(df): df = base1.main(df) lipt = get_lipt() df = df[lipt] sym = df['sym'].values[0] vol = pd.read_csv(os.path.join(base.dir_vol(), sym + ".csv")) d = {'Date': 'date'} for each in vol.columns[1:]: d[each] = 'ta_' + each vol = vol.rename(columns=d) vol = vol.fillna(0) dfDate = df[["date"]] vol = pd.merge(how='left', left=dfDate, right=vol, left_on='date', right_on='date') vol = vol.fillna(0) print df.shape[1] df = pd.merge(how='left', left=df, right=vol, left_on="date", right_on="date") print df.shape[1] return df
def main(df): df = df.reset_index("date", drop=True) df = base1.main(df) df = sig_123recall.main(df) df = sig_adx.main(df) #df = sig_upbreak.main(df) #assert 40 == df.shape[1] return df
def main(df): df = df.reset_index("date", drop=True) df = base1.main(df) df = sig_123recall.main(df) df = sig_adx.main(df) df = sig_upbreak.main(df) # assert 40 == df.shape[1] return df
def main(df): df.reset_index(drop=True, inplace=True) df = base1.main(df) lipt = get_lipt() df = df[lipt] df = sig_adx(df) df.reset_index(drop=True, inplace=True) assert 38 == df.shape[1] return df
def main(df): df = df.reset_index("date", drop=True) df = base1.main(df) lipt = get_lipt() df = df[lipt] del df["ta_ADX_7"] df = adx_sig(df) df = df.eset_index() assert 37 == df.shape[1] return df
def main(df): df = df.reset_index("date", drop=True) df = base1.main(df) for each in [ "ta_ROC_5", "ta_WILLR_2", "ta_ROC_7", "ta_WILLR_7", "ta_WILLR_5", "ta_STOCHRSI_slowd_28_5_3", "ta_NATR_28" ]: for i in [1, 2, 5, 7, 14]: df["%s-shift-%d" % (each, i)] = df[each].shift(i) return df
def main(df): df = df.reset_index("date", drop=True) df = base1.main(df) df = sig_123recall.main(df) df = sig_adx.main(df) df = sig_upbreak.main(df) df = sig_ta_PLUS_DM_28.main(df) del df["ta_PLUS_DM_28"] #assert 40 == df.shape[1] return df
def main(df): df = base1.main(df) lipt = get_lipt() df = df[lipt] df["shift"] = df['close'].shift(5) df["trend"] = df['close'] / df['shift'] df = df[df["trend"] < 1.0] del df["trend"] del df["shift"] assert 37 == df.shape[1] return df
def main(df): df = df.reset_index("date", drop = True) df = base1.main(df) df = sig_123recall.main(df) df = sig_adx.main(df) df = sig_upbreak.main(df) df = sig_ta_PLUS_DM_28.main(df) del df["ta_PLUS_DM_28"] #assert 40 == df.shape[1] return df
def main(df): df['closer'] = df['close'] / df['close'].shift(1) closes=df['closer'].values df = base1.main(df) for tri in [(6,13,8),(12, 26, 9), (24, 52, 18)]: macd = talib.MACD(closes, tri[0], tri[1], tri[2]) df['ta_MACD_macd_%d_%d_%d'%(tri[0],tri[1],tri[2])] = macd[0] df['ta_MACD_macdsignal_%d_%d_%d'%(tri[0],tri[1],tri[2])] = macd[1] df['ta_MACD_macdhist_%d_%d_%d'%(tri[0],tri[1],tri[2])] = macd[2] print df.shape return df
def main(df): df['closer'] = df['close'] / df['close'].shift(1) closes = df['closer'].values df = base1.main(df) for tri in [(6, 13, 8), (12, 26, 9), (24, 52, 18)]: macd = talib.MACD(closes, tri[0], tri[1], tri[2]) df['ta_MACD_macd_%d_%d_%d' % (tri[0], tri[1], tri[2])] = macd[0] df['ta_MACD_macdsignal_%d_%d_%d' % (tri[0], tri[1], tri[2])] = macd[1] df['ta_MACD_macdhist_%d_%d_%d' % (tri[0], tri[1], tri[2])] = macd[2] print df.shape return df
def main(df): df = base1.main(df) df.reset_index(inplace=True,drop=True) orig_feats = base.get_feat_names(df) df = merge(df, 1) df = merge(df, 2) df = merge(df, 3) for each in orig_feats: if not each.startswith("ta_ADX"): del df[each] print list(df.columns) return df
def main(df): df = base1.main(df) lipt = get_lipt() df = df[lipt] df["shift"] = df['close'].shift(5) df["trend"] = df['close'] / df['shift'] #print df[['date','sym','close',"shift", 'trend']].tail(10) df = df[df["trend"] > 1.0] del df["trend"] del df["shift"] assert 37 == df.shape[1] return df
def main(df): df = base1.main(df) df.reset_index(inplace=True,drop=True) orig_feats = base.get_feat_names(df) print df.shape df = merge(df, 1) print df.shape df = merge(df, 2) print df.shape for each in orig_feats: del df[each] print df.shape return df
def main(df): df = base1.main(df) df.reset_index(inplace=True, drop=True) orig_feats = base.get_feat_names(df) print df.shape df = merge(df, 1) print df.shape df = merge(df, 2) print df.shape for each in orig_feats: del df[each] print df.shape return df
def main(df): df = base1.main(df) lipt = get_lipt() df = df[lipt] df.reset_index(drop=True) print df.shape for i in range(14, 28): df = df.join(pta.PDM(df, i)) print df.shape #for i in (28,): # ma = pta.MA(df, i) # df["ta_MA_diff_%d" % i] = 100 * df["close"] / ma #for d in [(5, 7), (7,14), (14,21), (21,28), (7,21), (7,28)]: # df["ta_MA_diff_%d_%d"%(d[0],d[1])] = 100 * pta.MA(df,d[1])/pta.MA(df,d[0]) return df
def main(df): df = base1.main(df) df.reset_index(inplace=True,drop=True) dfStable = pd.read_pickle(os.path.join(dataroot, "phase1_dump", "sp500_base1_stable.pkl")) dfStable = dfStable[dfStable.direct != 0] tobe = [] for i, each in dfStable.iterrows(): name = each["name"] fname = each["fname"] start = each["start"] end = each["end"] #df.loc[:,name] = df.apply(lambda row: # 1 if ((row[fname] >= start) and (row[fname] < end)) else 0, axis=1) new = df.apply(lambda row: 1 if ((row[fname] >= start) and (row[fname] < end)) else 0, axis=1) tobe.append(pd.Series(new, name = name)) df = df.join(pd.DataFrame(tobe).transpose()) return df
def main(df): df = base1.main(df) df.reset_index(inplace=True, drop=True) dfStable = pd.read_pickle( os.path.join(dataroot, "phase1_dump", "sp500_base1_stable.pkl")) dfStable = dfStable[dfStable.direct != 0] tobe = [] for i, each in dfStable.iterrows(): name = each["name"] fname = each["fname"] start = each["start"] end = each["end"] #df.loc[:,name] = df.apply(lambda row: # 1 if ((row[fname] >= start) and (row[fname] < end)) else 0, axis=1) new = df.apply(lambda row: 1 if ((row[fname] >= start) and (row[fname] < end)) else 0, axis=1) tobe.append(pd.Series(new, name=name)) df = df.join(pd.DataFrame(tobe).transpose()) return df
def main(df): df1 = base1.main(df) df1.reset_index(drop=True, inplace=True) df2 = stable_3.main(df) df2.reset_index(drop=True, inplace=True) l = [ 'ta_CMO_14', 'ta_RSI_14', 'ta_CMO_7', 'ta_RSI_7', 'ta_CMO_10', 'ta_RSI_10', 'ta_TRIX_2', 'ta_RSI_28', 'ta_CMO_28', 'ta_RSI_5', 'ta_STOCHRSI_slowd_5_20_12', 'ta_ROC_7', 'ta_ROCR100_7', 'ta_ROCP_7', 'ta_ROCR_7', 'ta_STOCHRSI_slowd_7_20_12', 'ta_RSI_2', 'ta_ROC_5', 'ta_ROCR100_5', 'ta_ROCR_5', 'ta_ROCP_5', 'ta_WILLR_10', 'ta_WILLR_14', 'ta_ROC_2', 'ta_ROCR100_2', 'ta_ROCP_2', 'ta_ROCR_2', 'ta_WILLR_7' ] df1 = feat_select.append_deep_feats(df1, l) df1 = df1[base.get_feat_names(df1).extend(["date"])] print df2.shape df2 = df2.merge(df1, left_on='date', right_on="date", how='inner') print df2.shape return df2
def main(df): df1 = base1.main(df) df1.reset_index(drop=True, inplace=True) df2 = stable_3.main(df) df2.reset_index(drop=True, inplace=True) l = ['ta_CMO_14', 'ta_RSI_14','ta_CMO_7','ta_RSI_7','ta_CMO_10', 'ta_RSI_10', 'ta_TRIX_2', 'ta_RSI_28', 'ta_CMO_28', 'ta_RSI_5', 'ta_STOCHRSI_slowd_5_20_12', 'ta_ROC_7', 'ta_ROCR100_7', 'ta_ROCP_7', 'ta_ROCR_7', 'ta_STOCHRSI_slowd_7_20_12', 'ta_RSI_2', 'ta_ROC_5', 'ta_ROCR100_5', 'ta_ROCR_5', 'ta_ROCP_5', 'ta_WILLR_10', 'ta_WILLR_14', 'ta_ROC_2', 'ta_ROCR100_2', 'ta_ROCP_2', 'ta_ROCR_2', 'ta_WILLR_7'] df1 = feat_select.append_deep_feats(df1,l) df1 = df1[base.get_feat_names(df1).extend(["date"])] print df2.shape df2 = df2.merge(df1, left_on='date', right_on="date", how='inner') print df2.shape return df2
def main(df): df = base1.main(df) lipt = get_lipt() df = df[lipt] assert 37 == df.shape[1] return df
def main(df): df = base1.main(df) df = cdl.main(df) return df
def main(df): df = base1.main(df) df = cdl.main(df) print df.shape return df