predictlist = []
 outputlist = []
 
 money = 1000000#所持金
 filepath = "./stockdata/%s" % f
 #株価データの読み込み
 _time,_open,_max,_min,_close,_volume,_keisu,_shihon = md.readfile(filepath)
 
 try:
     iday = _time.index(START_TEST_DAY)
 except:
     print 'can not find START_TEST_DAY'
     continue
     
 train, test = md.getTeacherDataMultiTech(f,START_TEST_DAY,NEXT_DAY,input_num,stride=1,u_vol=u_vol,u_ema=u_ema,u_rsi=u_rsi,u_macd=u_macd,u_stoch=u_stoch,u_wil=u_wil)
 if (train == -1) or (test == -1):
     print 'skip',f
     continue
 
 
 
 for row in test:
     inputlist = row[:-output_num-2]
     output = row[-output_num-2]
     inputlist = np.array([inputlist]).astype(np.float32)
     y = model.predict(xp.asarray(inputlist))
     outputlist.append(output)
     predictlist.append(y.data[0,0])
 
 
Beispiel #2
0
    for row in test:
        inputlist = row[:-output_num-2]
        output = row[-output_num-2]
        inputlist = np.array([inputlist]).astype(np.float32)
        y = model_3.predict(xp.asarray(inputlist))
        if y.data.argmax() == output:
            rec_3.append(1)
        elif y.data.argmax() != output:
            rec_3.append(0)

elif args.mode == 1:

    print 'regression'
    
    #model_1
    train, test = md.getTeacherDataMultiTech(file,START_TEST_DAY,NEXT_DAY,args.input_num,stride=1,u_vol=True,u_ema=True)

    for row in test:
        inputlist = row[:-output_num-2]
        output = row[-output_num-2]
        inputlist = np.array([inputlist]).astype(np.float32)
        y = model_1.predict(xp.asarray(inputlist))
        rec_1.append((output - y.data[0,0])*(output - y.data[0,0]))
        
    #model_2
    train, test = md.getTeacherDataMultiTech(file,START_TEST_DAY,NEXT_DAY,args.input_num,stride=1,u_vol=True,u_rsi=True,u_stoch=True)

    for row in test:
        inputlist = row[:-output_num-2]
        output = row[-output_num-2]
        inputlist = np.array([inputlist]).astype(np.float32)