Beispiel #1
0
    def _classify(self, strings):

        input_ids, input_masks, segment_ids, _ = xlnet_tokenization(
            self._tokenizer, strings)
        r = self._execute(
            inputs=[input_ids, segment_ids, input_masks],
            input_labels=['Placeholder', 'Placeholder_1', 'Placeholder_2'],
            output_labels=['logits'],
        )
        return sigmoid(r['logits'])
Beispiel #2
0
 def _classify(self, strings):
     input_ids, input_masks, _, _ = bert_tokenization(
         self._tokenizer, strings
     )
     r = self._execute(
         inputs=[input_ids, input_masks],
         input_labels=['Placeholder', 'Placeholder_1'],
         output_labels=['logits'],
     )
     if self._multilabels:
         return sigmoid(r['logits'])
     else:
         return softmax(r['logits'], axis=-1)
Beispiel #3
0
    def predict_words(self,
                      string: str,
                      method: str = 'last',
                      visualization: bool = True):
        """
        classify words.

        Parameters
        ----------
        string : str
        method : str, optional (default='last')
            Attention layer supported. Allowed values:

            * ``'last'`` - attention from last layer.
            * ``'first'`` - attention from first layer.
            * ``'mean'`` - average attentions from all layers.
        visualization: bool, optional (default=True)
            If True, it will open the visualization dashboard.

        Returns
        -------
        dictionary: results
        """

        method = method.lower()
        if method not in ['last', 'first', 'mean']:
            raise ValueError(
                "method not supported, only support 'last', 'first' and 'mean'"
            )

        input_ids, input_masks, segment_ids, s_tokens = xlnet_tokenization(
            self._tokenizer, [string])
        r = self._execute(
            inputs=[input_ids, segment_ids, input_masks],
            input_labels=['Placeholder', 'Placeholder_1', 'Placeholder_2'],
            output_labels=['logits', 'attention', 'logits_seq'],
        )
        result = sigmoid(r['logits'])
        words = sigmoid(r['logits_seq'])
        attentions = r['attention']
        if method == 'first':
            cls_attn = attentions[0][:, :, 0, :]

        if method == 'last':
            cls_attn = attentions[-1][:, :, 0, :]

        if method == 'mean':
            cls_attn = np.mean(attentions, axis=0).mean(axis=2)

        cls_attn = np.mean(cls_attn, axis=1)
        total_weights = np.sum(cls_attn, axis=-1, keepdims=True)
        attn = cls_attn / total_weights
        result = result[0]
        words = words[0]
        weights = []
        merged = merge_sentencepiece_tokens(list(zip(s_tokens[0], attn[0])),
                                            model='xlnet')
        for i in range(words.shape[1]):
            m = merge_sentencepiece_tokens(
                list(zip(s_tokens[0], words[:, i])),
                weighted=False,
                model='xlnet',
            )
            _, weight = zip(*m)
            weights.append(weight)
        w, a = zip(*merged)
        words = np.array(weights).T
        distribution_words = words[:, np.argmax(words.sum(axis=0))]
        y_histogram, x_histogram = np.histogram(distribution_words,
                                                bins=np.arange(0, 1, 0.05))
        y_histogram = y_histogram / y_histogram.sum()
        x_attention = np.arange(len(w))
        left, right = np.unique(np.argmax(words, axis=1), return_counts=True)
        left = left.tolist()
        y_barplot = []
        for i in range(len(self._label)):
            if i not in left:
                y_barplot.append(i)
            else:
                y_barplot.append(right[left.index(i)])

        dict_result = {self._label[i]: result[i] for i in range(len(result))}
        dict_result['alphas'] = {w: a[no] for no, w in enumerate(w)}
        dict_result['word'] = {w: words[no] for no, w in enumerate(w)}
        dict_result['histogram'] = {'x': x_histogram, 'y': y_histogram}
        dict_result['attention'] = {'x': x_attention, 'y': np.array(a)}
        dict_result['barplot'] = {'x': self._label, 'y': y_barplot}
        dict_result['module'] = self._module
        if visualization:
            _render_toxic(dict_result)
        else:
            return dict_result
Beispiel #4
0
    def _predict_words(
        self,
        string,
        method,
        visualization,
        add_neutral=False,
        bins_size=0.05,
        **kwargs,
    ):
        method = method.lower()
        if method not in ['last', 'first', 'mean']:
            raise ValueError(
                "method not supported, only support 'last', 'first' and 'mean'"
            )
        if add_neutral:
            label = self._label + ['neutral']
        else:
            label = self._label

        input_ids, input_masks, segment_ids, s_tokens = xlnet_tokenization(
            self._tokenizer, [string])
        r = self._execute(
            inputs=[input_ids, segment_ids, input_masks],
            input_labels=['Placeholder', 'Placeholder_1', 'Placeholder_2'],
            output_labels=['logits', 'attention', 'logits_seq'],
        )
        if self._multilabels:
            result = sigmoid(r['logits'])
            words = sigmoid(r['logits_seq'])
        else:
            result = softmax(r['logits'], axis=-1)
            words = softmax(r['logits_seq'], axis=-1)
        attentions = r['attention']

        if method == 'first':
            cls_attn = attentions[0][:, :, 0, :]

        if method == 'last':
            cls_attn = attentions[-1][:, :, 0, :]

        if method == 'mean':
            cls_attn = np.mean(attentions, axis=0).mean(axis=2)

        cls_attn = np.mean(cls_attn, axis=1)
        total_weights = np.sum(cls_attn, axis=-1, keepdims=True)
        attn = cls_attn / total_weights
        words = words[0]

        if add_neutral:
            result = neutral(result)
            words = neutral(words)

        result = result[0]
        weights = []
        merged = merge_sentencepiece_tokens(list(zip(s_tokens[0], attn[0])),
                                            model='xlnet')
        for i in range(words.shape[1]):
            m = merge_sentencepiece_tokens(
                list(zip(s_tokens[0], words[:, i])),
                weighted=False,
                model='xlnet',
            )
            _, weight = zip(*m)
            weights.append(weight)
        w, a = zip(*merged)
        words = np.array(weights).T
        distribution_words = words[:, np.argmax(words.sum(axis=0))]
        y_histogram, x_histogram = np.histogram(distribution_words,
                                                bins=np.arange(
                                                    0, 1 + bins_size,
                                                    bins_size))
        y_histogram = y_histogram / y_histogram.sum()
        x_attention = np.arange(len(w))
        left, right = np.unique(np.argmax(words, axis=1), return_counts=True)
        left = left.tolist()
        y_barplot = []
        for i in range(len(label)):
            if i not in left:
                y_barplot.append(i)
            else:
                y_barplot.append(right[left.index(i)])

        dict_result = {label[i]: result[i] for i in range(len(result))}
        dict_result['alphas'] = {w: a[no] for no, w in enumerate(w)}
        dict_result['word'] = {w: words[no] for no, w in enumerate(w)}
        dict_result['histogram'] = {'x': x_histogram, 'y': y_histogram}
        dict_result['attention'] = {'x': x_attention, 'y': np.array(a)}
        dict_result['barplot'] = {'x': label, 'y': y_barplot}
        dict_result['module'] = self._module

        if visualization:
            render_dict[self._module](dict_result, **kwargs)
        else:
            return dict_result