def hierarchicalLevel(imIn, imOut, grid=mamba.DEFAULT_GRID):
    """
    Computes the next hierarchical level of image 'imIn' in the
    waterfalls transformation and puts the result in 'imOut'.
    This operation makes sure that the next hierarchical level is embedded
    in the previous one.
    'imIn' must be a valued watershed image.
    """

    imWrk0 = mamba.imageMb(imIn)
    imWrk1 = mamba.imageMb(imIn, 1)
    imWrk2 = mamba.imageMb(imIn, 1)
    imWrk3 = mamba.imageMb(imIn, 1)
    imWrk4 = mamba.imageMb(imIn, 32)
    mamba.threshold(imIn, imWrk1, 0, 0)
    mamba.negate(imWrk1, imWrk2)
    hierarchy(imIn, imWrk2, imWrk0, grid=grid)
    mamba.minima(imWrk0, imWrk2, grid=grid)
    mamba.label(imWrk2, imWrk4, grid=grid)
    mamba.watershedSegment(imWrk0, imWrk4, grid=grid)
    mamba.copyBytePlane(imWrk4, 3, imWrk0)
    mamba.threshold(imWrk0, imWrk2, 0, 0)
    mamba.diff(imWrk1, imWrk2, imWrk3)
    mamba.build(imWrk1, imWrk3)
    se = mamba.structuringElement(mamba.getDirections(grid), grid)
    mamba.dilate(imWrk3, imWrk1, 1, se)
    mamba.diff(imWrk2, imWrk1, imWrk1)
    mamba.logic(imWrk1, imWrk3, imWrk1, "sup")
    mamba.convertByMask(imWrk1, imWrk0, 255, 0)
    mamba.logic(imIn, imWrk0, imOut, "inf")
def hierarchicalLevel(imIn, imOut, grid=mamba.DEFAULT_GRID):
    """
    Computes the next hierarchical level of image 'imIn' in the
    waterfalls transformation and puts the result in 'imOut'.
    This operation makes sure that the next hierarchical level is embedded
    in the previous one.
    'imIn' must be a valued watershed image.
    """
    
    imWrk0 = mamba.imageMb(imIn)
    imWrk1 = mamba.imageMb(imIn, 1)
    imWrk2 = mamba.imageMb(imIn, 1)
    imWrk3 = mamba.imageMb(imIn, 1)
    imWrk4 = mamba.imageMb(imIn, 32)
    mamba.threshold(imIn,imWrk1, 0, 0)
    mamba.negate(imWrk1, imWrk2)
    hierarchy(imIn, imWrk2, imWrk0, grid=grid)
    mamba.minima(imWrk0, imWrk2, grid=grid)
    mamba.label(imWrk2, imWrk4, grid=grid)
    mamba.watershedSegment(imWrk0, imWrk4, grid=grid)
    mamba.copyBytePlane(imWrk4, 3, imWrk0)
    mamba.threshold(imWrk0, imWrk2, 0, 0)
    mamba.diff(imWrk1, imWrk2, imWrk3)
    mamba.build(imWrk1, imWrk3)
    se = mamba.structuringElement(mamba.getDirections(grid), grid)
    mamba.dilate(imWrk3, imWrk1, 1, se)
    mamba.diff(imWrk2, imWrk1, imWrk1)
    mamba.logic(imWrk1, imWrk3, imWrk1, "sup")
    mamba.convertByMask(imWrk1, imWrk0, 255, 0)
    mamba.logic(imIn, imWrk0, imOut, "inf")
def generalSegment(imIn, imOut, gain=2.0, offset=1, grid=mamba.DEFAULT_GRID):
    """
    General segmentation algorithm. This algorithm is controlled by two
    parameters: the 'gain' (identical to the gain used in standard and P
    segmentation) and a new one, the 'offset'. The 'offset' indicates which
    level of hierarchy is compared to the current hierarchical image.
    The 'offset' is relative to the current hierarchical level. If 'offset' is
    equal to 1, this operator corresponds to the standard segmentation, if
    'offset' is equal to 255 (this value stands for the infinity), the operator
    is equivalent to P algorithm.
    Image 'imOut' contains all these hierarchies which are embedded.
    'imIn' and 'imOut' must be greyscale images. 'imIn' and 'imOut' must be
    different.
    This transformation returns the number of hierarchical levels.    
    """

    imWrk0 = mamba.imageMb(imIn)
    imWrk1 = mamba.imageMb(imIn)
    imWrk2 = mamba.imageMb(imIn)
    imWrk3 = mamba.imageMb(imIn)
    imWrk4 = mamba.imageMb(imIn, 1)
    imWrk5 = mamba.imageMb(imIn, 1)
    imWrk6 = mamba.imageMb(imIn, 32)
    mamba.copy(imIn, imWrk1)
    mamba.mulRealConst(imIn, gain, imWrk6)
    mamba.floorSubConst(imWrk6, 1, imWrk6)
    mamba.threshold(imWrk6, imWrk4, 255, mamba.computeMaxRange(imWrk6)[1])
    mamba.copyBytePlane(imWrk6, 0, imWrk0)
    mamba.convert(imWrk4, imWrk2)
    mamba.logic(imWrk0, imWrk2, imWrk0, "sup")
    mamba.logic(imWrk0, imWrk1, imWrk0, "sup")
    imOut.reset()
    nbLevels = 0
    mamba.threshold(imWrk1, imWrk4, 1, 255)
    flag = not (mamba.checkEmptiness(imWrk4))
    while flag:
        nbLevels += 1
        hierarchy(imWrk1, imWrk4, imWrk2, grid=grid)
        mamba.add(imOut, imWrk4, imOut)
        v = max(nbLevels - offset, 0) + 1
        mamba.threshold(imOut, imWrk4, v, 255)
        mamba.valuedWatershed(imWrk2, imWrk3, grid=grid)
        mamba.threshold(imWrk3, imWrk5, 1, 255)
        flag = not (mamba.checkEmptiness(imWrk5))
        hierarchy(imWrk3, imWrk5, imWrk2, grid=grid)
        mamba.generateSupMask(imWrk0, imWrk2, imWrk5, strict=False)
        mamba.logic(imWrk4, imWrk5, imWrk4, "inf")
        mamba.convertByMask(imWrk4, imWrk3, 0, 255)
        mamba.logic(imWrk1, imWrk3, imWrk3, "inf")
        mamba.negate(imWrk4, imWrk4)
        mamba.label(imWrk4, imWrk6, grid=grid)
        mamba.watershedSegment(imWrk3, imWrk6, grid=grid)
        mamba.copyBytePlane(imWrk6, 3, imWrk3)
        mamba.logic(imWrk1, imWrk2, imWrk1, "sup")
        mamba.logic(imWrk1, imWrk3, imWrk1, "inf")
        mamba.threshold(imWrk1, imWrk4, 1, 255)
    return nbLevels
def generalSegment(imIn, imOut, gain=2.0, offset=1, grid=mamba.DEFAULT_GRID):
    """
    General segmentation algorithm. This algorithm is controlled by two
    parameters: the 'gain' (identical to the gain used in standard and P
    segmentation) and a new one, the 'offset'. The 'offset' indicates which
    level of hierarchy is compared to the current hierarchical image.
    The 'offset' is relative to the current hierarchical level. If 'offset' is
    equal to 1, this operator corresponds to the standard segmentation, if
    'offset' is equal to 255 (this value stands for the infinity), the operator
    is equivalent to P algorithm.
    Image 'imOut' contains all these hierarchies which are embedded.
    'imIn' and 'imOut' must be greyscale images. 'imIn' and 'imOut' must be
    different.
    This transformation returns the number of hierarchical levels.    
    """
    
    imWrk0 = mamba.imageMb(imIn)
    imWrk1 = mamba.imageMb(imIn)
    imWrk2 = mamba.imageMb(imIn)
    imWrk3 = mamba.imageMb(imIn)
    imWrk4 = mamba.imageMb(imIn, 1)
    imWrk5 = mamba.imageMb(imIn, 1)
    imWrk6 = mamba.imageMb(imIn, 32)    
    mamba.copy(imIn, imWrk1)
    mamba.mulRealConst(imIn, gain, imWrk6)
    mamba.floorSubConst(imWrk6, 1, imWrk6)
    mamba.threshold(imWrk6, imWrk4, 255, mamba.computeMaxRange(imWrk6)[1])  
    mamba.copyBytePlane(imWrk6, 0, imWrk0)
    mamba.convert(imWrk4, imWrk2)
    mamba.logic(imWrk0, imWrk2, imWrk0, "sup")
    mamba.logic(imWrk0, imWrk1, imWrk0, "sup")
    imOut.reset()
    nbLevels = 0
    mamba.threshold(imWrk1, imWrk4, 1, 255)
    flag = not(mamba.checkEmptiness(imWrk4))
    while flag:
        nbLevels += 1
        hierarchy(imWrk1, imWrk4, imWrk2, grid=grid)
        mamba.add(imOut, imWrk4, imOut)
        v = max(nbLevels - offset, 0) + 1
        mamba.threshold(imOut, imWrk4, v, 255)
        mamba.valuedWatershed(imWrk2, imWrk3, grid=grid)
        mamba.threshold(imWrk3, imWrk5, 1, 255)
        flag = not(mamba.checkEmptiness(imWrk5))
        hierarchy(imWrk3, imWrk5, imWrk2, grid=grid)
        mamba.generateSupMask(imWrk0, imWrk2, imWrk5, strict=False)
        mamba.logic(imWrk4, imWrk5, imWrk4, "inf")
        mamba.convertByMask(imWrk4, imWrk3, 0, 255)
        mamba.logic(imWrk1, imWrk3, imWrk3, "inf")
        mamba.negate(imWrk4, imWrk4)
        mamba.label(imWrk4, imWrk6, grid=grid)
        mamba.watershedSegment(imWrk3, imWrk6, grid=grid)
        mamba.copyBytePlane(imWrk6, 3, imWrk3)
        mamba.logic(imWrk1, imWrk2, imWrk1, "sup")
        mamba.logic(imWrk1, imWrk3, imWrk1, "inf")
        mamba.threshold(imWrk1, imWrk4, 1, 255)
    return nbLevels
def standardSegment(imIn, imOut, gain=2.0, grid=mamba.DEFAULT_GRID):
    """
    General standard segmentation. This algorithm keeps the contours of the 
    watershed transform which are above or equal to the hierarchical image 
    associated to the next level of hierarchy when the altitude of the contour
    is multiplied by a 'gain' factor (default is 2.0). This transform also ends 
    by idempotence. All the hierarchical levels of image 'imIn'(which is a 
    valued watershed) are computed. 'imOut' contains all these hierarchies which
    are embedded, so that hierarchy i is simply obtained by a threshold
    [i+1, 255] of image 'imOut'.
    'imIn' and 'imOut' must be greyscale images. 'imIn' and 'imOut' must be
    different.
    This transformation returns the number of hierarchical levels.    
    """

    imWrk0 = mamba.imageMb(imIn)
    imWrk1 = mamba.imageMb(imIn)
    imWrk2 = mamba.imageMb(imIn)
    imWrk3 = mamba.imageMb(imIn)
    imWrk4 = mamba.imageMb(imIn, 1)
    imWrk5 = mamba.imageMb(imIn, 1)
    imWrk6 = mamba.imageMb(imIn, 32)
    mamba.copy(imIn, imWrk1)
    mamba.mulRealConst(imIn, gain, imWrk6)
    mamba.floorSubConst(imWrk6, 1, imWrk6)
    mamba.threshold(imWrk6, imWrk4, 255, mamba.computeMaxRange(imWrk6)[1])
    mamba.copyBytePlane(imWrk6, 0, imWrk0)
    mamba.convert(imWrk4, imWrk2)
    mamba.logic(imWrk0, imWrk2, imWrk0, "sup")
    mamba.logic(imWrk0, imWrk1, imWrk0, "sup")
    imOut.reset()
    nbLevels = 0
    mamba.threshold(imWrk1, imWrk4, 1, 255)
    flag = not (mamba.checkEmptiness(imWrk4))
    while flag:
        hierarchy(imWrk1, imWrk4, imWrk2, grid=grid)
        mamba.add(imOut, imWrk4, imOut)
        mamba.valuedWatershed(imWrk2, imWrk3, grid=grid)
        mamba.threshold(imWrk3, imWrk5, 1, 255)
        flag = not (mamba.checkEmptiness(imWrk5))
        hierarchy(imWrk3, imWrk5, imWrk2, grid=grid)
        mamba.generateSupMask(imWrk0, imWrk2, imWrk5, strict=False)
        mamba.logic(imWrk4, imWrk5, imWrk4, "inf")
        mamba.convertByMask(imWrk4, imWrk3, 0, 255)
        mamba.logic(imWrk1, imWrk3, imWrk3, "inf")
        mamba.negate(imWrk4, imWrk4)
        mamba.label(imWrk4, imWrk6, grid=grid)
        mamba.watershedSegment(imWrk3, imWrk6, grid=grid)
        mamba.copyBytePlane(imWrk6, 3, imWrk3)
        mamba.logic(imWrk1, imWrk2, imWrk1, "sup")
        mamba.logic(imWrk1, imWrk3, imWrk1, "inf")
        mamba.threshold(imWrk1, imWrk4, 1, 255)
        nbLevels += 1
    return nbLevels
def standardSegment(imIn, imOut, gain=2.0, grid=mamba.DEFAULT_GRID):
    """
    General standard segmentation. This algorithm keeps the contours of the 
    watershed transform which are above or equal to the hierarchical image 
    associated to the next level of hierarchy when the altitude of the contour
    is multiplied by a 'gain' factor (default is 2.0). This transform also ends 
    by idempotence. All the hierarchical levels of image 'imIn'(which is a 
    valued watershed) are computed. 'imOut' contains all these hierarchies which
    are embedded, so that hierarchy i is simply obtained by a threshold
    [i+1, 255] of image 'imOut'.
    'imIn' and 'imOut' must be greyscale images. 'imIn' and 'imOut' must be
    different.
    This transformation returns the number of hierarchical levels.    
    """
    
    imWrk0 = mamba.imageMb(imIn)
    imWrk1 = mamba.imageMb(imIn)
    imWrk2 = mamba.imageMb(imIn)
    imWrk3 = mamba.imageMb(imIn)
    imWrk4 = mamba.imageMb(imIn, 1)
    imWrk5 = mamba.imageMb(imIn, 1)
    imWrk6 = mamba.imageMb(imIn, 32)    
    mamba.copy(imIn, imWrk1)
    mamba.mulRealConst(imIn, gain, imWrk6)
    mamba.floorSubConst(imWrk6, 1, imWrk6)
    mamba.threshold(imWrk6, imWrk4, 255, mamba.computeMaxRange(imWrk6)[1])  
    mamba.copyBytePlane(imWrk6, 0, imWrk0)
    mamba.convert(imWrk4, imWrk2)
    mamba.logic(imWrk0, imWrk2, imWrk0, "sup")
    mamba.logic(imWrk0, imWrk1, imWrk0, "sup")
    imOut.reset()
    nbLevels = 0
    mamba.threshold(imWrk1, imWrk4, 1, 255)
    flag = not(mamba.checkEmptiness(imWrk4))
    while flag:
        hierarchy(imWrk1, imWrk4, imWrk2, grid=grid)
        mamba.add(imOut, imWrk4, imOut)
        mamba.valuedWatershed(imWrk2, imWrk3, grid=grid)
        mamba.threshold(imWrk3, imWrk5, 1, 255)
        flag = not(mamba.checkEmptiness(imWrk5))
        hierarchy(imWrk3, imWrk5, imWrk2, grid=grid)
        mamba.generateSupMask(imWrk0, imWrk2, imWrk5, strict=False)
        mamba.logic(imWrk4, imWrk5, imWrk4, "inf")
        mamba.convertByMask(imWrk4, imWrk3, 0, 255)
        mamba.logic(imWrk1, imWrk3, imWrk3, "inf")
        mamba.negate(imWrk4, imWrk4)
        mamba.label(imWrk4, imWrk6, grid=grid)
        mamba.watershedSegment(imWrk3, imWrk6, grid=grid)
        mamba.copyBytePlane(imWrk6, 3, imWrk3)
        mamba.logic(imWrk1, imWrk2, imWrk1, "sup")
        mamba.logic(imWrk1, imWrk3, imWrk1, "inf")
        mamba.threshold(imWrk1, imWrk4, 1, 255)
        nbLevels += 1
    return nbLevels
def extendedSegment(imIn, imTest, imOut, offset=255, grid=mamba.DEFAULT_GRID):
    """
    Extended (experimental) segmentation algorithm. This algorithm is controlled
    by image 'imTest'. The current hierarchical image is compared to image
    'imTest'. This image must be a greyscale image. The 'offset' indicates which
    level of hierarchy is compared to the current hierarchical image.
    The 'offset' is relative to the current hierarchical level (by default,
    'offset' is equal to 255, so that the initial segmentation is used).
    Image 'imOut' contains all these hierarchies which are embedded.
    'imIn', 'imTest' and 'imOut' must be greyscale images.
    'imIn', 'imTest' and 'imOut' must be different.
    This transformation returns the number of hierarchical levels.    
    """

    imWrk1 = mamba.imageMb(imIn)
    imWrk2 = mamba.imageMb(imIn)
    imWrk3 = mamba.imageMb(imIn)
    imWrk4 = mamba.imageMb(imIn, 1)
    imWrk5 = mamba.imageMb(imIn, 1)
    imWrk6 = mamba.imageMb(imIn, 32)
    mamba.copy(imIn, imWrk1)
    imOut.reset()
    nbLevels = 0
    mamba.threshold(imWrk1, imWrk4, 1, 255)
    flag = not (mamba.checkEmptiness(imWrk4))
    while flag:
        nbLevels += 1
        hierarchy(imWrk1, imWrk4, imWrk2, grid=grid)
        mamba.add(imOut, imWrk4, imOut)
        v = max(nbLevels - offset, 0) + 1
        mamba.threshold(imOut, imWrk4, v, 255)
        mamba.valuedWatershed(imWrk2, imWrk3, grid=grid)
        mamba.threshold(imWrk3, imWrk5, 1, 255)
        flag = not (mamba.checkEmptiness(imWrk5))
        hierarchy(imWrk3, imWrk5, imWrk2, grid=grid)
        mamba.generateSupMask(imTest, imWrk2, imWrk5, strict=False)
        mamba.logic(imWrk4, imWrk5, imWrk4, "inf")
        mamba.convertByMask(imWrk4, imWrk3, 0, 255)
        mamba.logic(imWrk1, imWrk3, imWrk3, "inf")
        mamba.negate(imWrk4, imWrk4)
        mamba.label(imWrk4, imWrk6, grid=grid)
        mamba.watershedSegment(imWrk3, imWrk6, grid=grid)
        mamba.copyBytePlane(imWrk6, 3, imWrk3)
        mamba.logic(imWrk1, imWrk2, imWrk1, "sup")
        mamba.logic(imWrk1, imWrk3, imWrk1, "inf")
        mamba.threshold(imWrk1, imWrk4, 1, 255)
    return nbLevels
def extendedSegment(imIn, imTest, imOut, offset=255, grid=mamba.DEFAULT_GRID):
    """
    Extended (experimental) segmentation algorithm. This algorithm is controlled
    by image 'imTest'. The current hierarchical image is compared to image
    'imTest'. This image must be a greyscale image. The 'offset' indicates which
    level of hierarchy is compared to the current hierarchical image.
    The 'offset' is relative to the current hierarchical level (by default,
    'offset' is equal to 255, so that the initial segmentation is used).
    Image 'imOut' contains all these hierarchies which are embedded.
    'imIn', 'imTest' and 'imOut' must be greyscale images.
    'imIn', 'imTest' and 'imOut' must be different.
    This transformation returns the number of hierarchical levels.    
    """
    
    imWrk1 = mamba.imageMb(imIn)
    imWrk2 = mamba.imageMb(imIn)
    imWrk3 = mamba.imageMb(imIn)
    imWrk4 = mamba.imageMb(imIn, 1)
    imWrk5 = mamba.imageMb(imIn, 1)
    imWrk6 = mamba.imageMb(imIn, 32)    
    mamba.copy(imIn, imWrk1)
    imOut.reset()
    nbLevels = 0
    mamba.threshold(imWrk1, imWrk4, 1, 255)
    flag = not(mamba.checkEmptiness(imWrk4))
    while flag:
        nbLevels += 1
        hierarchy(imWrk1, imWrk4, imWrk2, grid=grid)
        mamba.add(imOut, imWrk4, imOut)
        v = max(nbLevels - offset, 0) + 1
        mamba.threshold(imOut, imWrk4, v, 255)
        mamba.valuedWatershed(imWrk2, imWrk3, grid=grid)
        mamba.threshold(imWrk3, imWrk5, 1, 255)
        flag = not(mamba.checkEmptiness(imWrk5))
        hierarchy(imWrk3, imWrk5, imWrk2, grid=grid)
        mamba.generateSupMask(imTest, imWrk2, imWrk5, strict=False)
        mamba.logic(imWrk4, imWrk5, imWrk4, "inf")
        mamba.convertByMask(imWrk4, imWrk3, 0, 255)
        mamba.logic(imWrk1, imWrk3, imWrk3, "inf")
        mamba.negate(imWrk4, imWrk4)
        mamba.label(imWrk4, imWrk6, grid=grid)
        mamba.watershedSegment(imWrk3, imWrk6, grid=grid)
        mamba.copyBytePlane(imWrk6, 3, imWrk3)
        mamba.logic(imWrk1, imWrk2, imWrk1, "sup")
        mamba.logic(imWrk1, imWrk3, imWrk1, "inf")
        mamba.threshold(imWrk1, imWrk4, 1, 255)
    return nbLevels
def enhancedWaterfalls(imIn, imOut, grid=mamba.DEFAULT_GRID):
    """
    Enhanced waterfall algorithm. Compared to the classical waterfalls
    algorithm, this one adds the contours of the watershed transform which are
    above the hierarchical image associated to the next level of hierarchy. This
    waterfalls transform also ends to an empty set. All the hierarchical levels
    of image 'imIn' (which is a valued watershed) are computed. 'imOut' contains
    all these hierarchies which are embedded, so that hierarchy i is simply 
    obtained by a threshold [i+1, 255] of image 'imOut'.
    'imIn' and 'imOut' must be greyscale images. 'imIn' and 'imOu't must be 
    different.
    This transformation returns the number of hierarchical levels.    
    """

    imWrk1 = mamba.imageMb(imIn)
    imWrk2 = mamba.imageMb(imIn)
    imWrk3 = mamba.imageMb(imIn)
    imWrk4 = mamba.imageMb(imIn, 1)
    imWrk5 = mamba.imageMb(imIn, 32)
    mamba.copy(imIn, imWrk1)
    imOut.reset()
    nbLevels = 0
    mamba.threshold(imWrk1, imWrk4, 1, 255)
    flag = not (mamba.checkEmptiness(imWrk4))
    while flag:
        mamba.add(imOut, imWrk4, imOut)
        hierarchy(imWrk1, imWrk4, imWrk2, grid=grid)
        mamba.valuedWatershed(imWrk2, imWrk3, grid=grid)
        mamba.threshold(imWrk3, imWrk4, 1, 255)
        flag = not (mamba.checkEmptiness(imWrk4))
        hierarchy(imWrk3, imWrk4, imWrk2, grid=grid)
        mamba.generateSupMask(imWrk2, imWrk1, imWrk4, strict=True)
        mamba.convertByMask(imWrk4, imWrk3, 255, 0)
        mamba.logic(imWrk1, imWrk3, imWrk3, "inf")
        mamba.label(imWrk4, imWrk5, grid=grid)
        mamba.watershedSegment(imWrk3, imWrk5, grid=grid)
        mamba.copyBytePlane(imWrk5, 3, imWrk1)
        mamba.logic(imWrk1, imWrk3, imWrk1, "inf")
        mamba.threshold(imWrk1, imWrk4, 1, 255)
        nbLevels += 1
    return nbLevels
def enhancedWaterfalls(imIn, imOut, grid=mamba.DEFAULT_GRID):
    """
    Enhanced waterfall algorithm. Compared to the classical waterfalls
    algorithm, this one adds the contours of the watershed transform which are
    above the hierarchical image associated to the next level of hierarchy. This
    waterfalls transform also ends to an empty set. All the hierarchical levels
    of image 'imIn' (which is a valued watershed) are computed. 'imOut' contains
    all these hierarchies which are embedded, so that hierarchy i is simply 
    obtained by a threshold [i+1, 255] of image 'imOut'.
    'imIn' and 'imOut' must be greyscale images. 'imIn' and 'imOu't must be 
    different.
    This transformation returns the number of hierarchical levels.    
    """
    
    imWrk1 = mamba.imageMb(imIn)
    imWrk2 = mamba.imageMb(imIn)
    imWrk3 = mamba.imageMb(imIn)
    imWrk4 = mamba.imageMb(imIn, 1)
    imWrk5 = mamba.imageMb(imIn, 32)   
    mamba.copy(imIn, imWrk1)
    imOut.reset()
    nbLevels = 0
    mamba.threshold(imWrk1, imWrk4, 1, 255)
    flag = not(mamba.checkEmptiness(imWrk4))
    while flag:
        mamba.add(imOut, imWrk4, imOut)
        hierarchy(imWrk1, imWrk4, imWrk2, grid=grid)
        mamba.valuedWatershed(imWrk2, imWrk3, grid=grid)
        mamba.threshold(imWrk3, imWrk4, 1, 255)
        flag = not(mamba.checkEmptiness(imWrk4))
        hierarchy(imWrk3, imWrk4, imWrk2, grid=grid)
        mamba.generateSupMask(imWrk2, imWrk1, imWrk4, strict=True)
        mamba.convertByMask(imWrk4, imWrk3, 255, 0)
        mamba.logic(imWrk1, imWrk3, imWrk3, "inf")
        mamba.label(imWrk4, imWrk5, grid=grid)
        mamba.watershedSegment(imWrk3, imWrk5, grid=grid)
        mamba.copyBytePlane(imWrk5, 3, imWrk1)
        mamba.logic(imWrk1, imWrk3, imWrk1, "inf")
        mamba.threshold(imWrk1, imWrk4, 1, 255)
        nbLevels += 1
    return nbLevels
Beispiel #11
0
        def _watershed_using_quasi_distance(self):
            """
            疑似ユークリッド距離(Quasi Distance) に基づく
            Watershed 領域分割
            
            Returns
            -------
            numpy.ndarray
                領域分割線の画像
            """

            from mamba import (
                imageMb,
                gradient,
                add,
                negate,
                quasiDistance,
                copyBytePlane,
                subConst,
                build,
                maxima,
                label,
                watershedSegment,
                logic,
                mix,
            )

            from utils.convert import mamba2np, np2mamba

            # Channel Split
            if self.src_img.ndim == 3:
                b, g, r = [np2mamba(self.src_img[:, :, i]) for i in range(3)]
            elif self.src_img.ndim == 2:
                b, g, r = [np2mamba(self.src_img)] * 3

            # We will perform a thick gradient on each color channel (contours in original
            # picture are more or less fuzzy) and we add all these gradients
            gradient = imageMb(r)
            tmp_1 = imageMb(r)
            gradient.reset()
            gradient(r, tmp_1, 2)
            add(tmp_1, gradient, gradient)
            gradient(g, tmp_1, 2)
            add(tmp_1, gradient, gradient)
            gradient(b, tmp_1, 2)
            add(tmp_1, gradient, gradient)

            # Then we invert the gradient image and we compute its quasi-distance
            quasi_dist = imageMb(gradient, 32)
            negate(gradient, gradient)
            quasiDistance(gradient, tmp_1, quasi_dist)

            if self.is_logging:
                self.logger.logging_img(tmp_1, "quasi_dist_gradient")
                self.logger.logging_img(quasi_dist, "quasi_dist")

            # The maxima of the quasi-distance are extracted and filtered (too close maxima,
            # less than 6 pixels apart, are merged)
            tmp_2 = imageMb(r)
            marker = imageMb(gradient, 1)
            copyBytePlane(quasi_dist, 0, tmp_1)
            subConst(tmp_1, 3, tmp_2)
            build(tmp_1, tmp_2)
            maxima(tmp_2, marker)

            # The marker-controlled watershed of the gradient is performed
            watershed = imageMb(gradient)
            label(marker, quasi_dist)
            negate(gradient, gradient)
            watershedSegment(gradient, quasi_dist)
            copyBytePlane(quasi_dist, 3, watershed)

            # The segmented binary and color image are stored
            logic(r, watershed, r, "sup")
            logic(g, watershed, g, "sup")
            logic(b, watershed, b, "sup")

            segmented_image = mix(r, g, b)

            if self.is_logging:
                self.logger.logging_img(segmented_image, "segmented_image")

            watershed = mamba2np(watershed)

            return watershed