Beispiel #1
0
from pyartm import regularizers
from pyartm_datasets import main_cases
from pyartm.optimizations import timed_default

import manager

if __name__ == '__main__':
    n_dw_matrix = main_cases.get_20newsgroups([
        'rec.autos', 'rec.motorcycles', 'rec.sport.baseball',
        'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med',
        'sci.space'
    ])[0]
    manager.perform_experiment(
        n_dw_matrix,
        timed_default.Optimizer(
            regularization_list=[regularizers.Additive(0., 0.)] * 100,
            return_counters=True), 10, 100)
Beispiel #2
0
            'rec.sport.hockey', 'sci.crypt', 'sci.electronics', 'sci.med',
            'sci.space'
        ],
        train_proportion=0.8)[:2]

    args_list = list()
    for T in [10, 25]:
        for theta_alpha in [0.1, 0.01, 0.1]:
            regularization_list = [regularizers.Additive(0, theta_alpha)
                                   ] * ITERS_COUNT
            args_list.append(
                (train_n_dw_matrix, test_n_dw_matrix,
                 default.Optimizer(regularization_list), T, SAMPLES,
                 '20news_experiment/20news_{}t_default_{}_{}.pkl'.format(
                     T, 0., theta_alpha)))
            args_list.append(
                (train_n_dw_matrix, test_n_dw_matrix,
                 thetaless.Optimizer(regularization_list), T, SAMPLES,
                 '20news_experiment/20news_{}t_thetaless_{}_{}.pkl'.format(
                     T, 0., theta_alpha)))
            args_list.append(
                (train_n_dw_matrix, test_n_dw_matrix,
                 transfer_thetaless.Optimizer(regularization_list), T, SAMPLES,
                 '20news_experiment/20news_{}t_transfer_thetaless_{}_{}.pkl'.
                 format(T, 0., theta_alpha)))

    #manager.perform_experiment(args_list[0])
    #manager.perform_experiment(args_list[1])
    manager.perform_experiment(args_list[2])
    #Pool(processes=5).map(manager.perform_experiment, args_list)
Beispiel #3
0
from pyartm import regularizers
from pyartm_datasets import main_cases
from pyartm.optimizations import timed_default

import manager


if __name__ == '__main__':
    manager.perform_experiment(
        main_cases.get_nips()[0], timed_default.Optimizer(
            regularization_list=[regularizers.Additive(0., 0.)] * 100,
            return_counters=True
        ), 10, 100
    )
Beispiel #4
0
from pyartm_datasets import main_cases

import manager

if __name__ == '__main__':
    (train_n_dw_matrix, test_n_dw_matrix, _,
     num_2_token) = main_cases.get_twitter_sentiment140(train_proportion=0.8,
                                                        min_docs_occurrences=3)
    manager.perform_experiment(train_n_dw_matrix, test_n_dw_matrix, 10,
                               num_2_token)
Beispiel #5
0
from pyartm import regularizers
from pyartm_datasets import main_cases
from pyartm.optimizations import timed_default

import manager

if __name__ == '__main__':
    manager.perform_experiment(
        main_cases.get_twitter_sentiment140(min_docs_occurrences=3,
                                            train_proportion=0.8)[0],
        timed_default.Optimizer(
            regularization_list=[regularizers.Additive(0., 0.)] * 100,
            return_counters=True), 10, 100)