Beispiel #1
0
class Robot():
	def __init__(self):
		rospy.init_node("robot")
		self.config = read_config()
		#r.seed(self.config['seed'])
		self.num_particles = self.config['num_particles']
		self.laser_sigma_hit = self.config['laser_sigma_hit']
		self.move_list = self.config['move_list']
		self.move_list_length = len(self.move_list)
		self.first_move_sigma_x = self.config['first_move_sigma_x']
		self.first_move_sigma_y = self.config['first_move_sigma_y']
		self.first_move_sigma_angle = self.config['first_move_sigma_angle']
		self.laser_z_hit = self.config['laser_z_hit']
		self.laser_z_rand = self.config['laser_z_rand']
		self.resample_sigma_x = self.config['resample_sigma_x']
		self.resample_sigma_y = self.config['resample_sigma_y']
		self.resample_sigma_theta = self.config['resample_sigma_angle']

		self.handle_map_first_called = 1
		self.move_made = 0
		self.map_data_sub = rospy.Subscriber(
			"/map", 
			OccupancyGrid, 
			self.handle_map_data
		)
		
		self.base_scan_data = rospy.Subscriber(
			"/base_scan",
			LaserScan,
			self.handle_base_scan_data
		)

		self.particle_pose_pub = rospy.Publisher(
			"/particlecloud",
			PoseArray,
			queue_size = 10
		)
		
		self.likelihood_pub = rospy.Publisher(
			"/likelihood_field",
			OccupancyGrid,
			queue_size = 1,
			latch = True
		)

		self.result_update_pub = rospy.Publisher(
			"/result_update",
			Bool,
			queue_size = 10
		)

		self.sim_complete_pub = rospy.Publisher(
			"/sim_complete",
			Bool,
			queue_size = 10
		)

		self.scan_data_avai = 0
		self.sensor_loop()



	def sensor_loop(self):
		while not rospy.is_shutdown():
			if ( self.handle_map_first_called == 0):
				#print "went in while(true) loop"
				self.create_particles()
				self.construct_field()
				#print "finished construct field"
				# publish OccupancyMap
				grid_mssg = self.my_map.to_message()
				rospy.sleep(1)
				self.likelihood_pub.publish(grid_mssg)

				self.make_all_moves()
				break
		
		rospy.sleep(1)
		self.sim_complete_pub.publish(True)
		rospy.sleep(1)
		rospy.signal_shutdown(Robot)


	def handle_base_scan_data (self, data):
		self.scan_info = data
		self.scan_data_avai = 1


	def process_scan_data (self):
		while( self.scan_data_avai == 0 ):
			rospy.sleep(0.1)
		#print "process data"
		#self.scan_data_avai = 0
		self.scan_data = self.scan_info

		for i in range (self.num_particles):
			if( np.isnan(self.particle_array[i].x) or np.isnan(self.particle_array[i].y) or np.isinf(self.particle_array[i].x) or np.isinf(self.particle_array[i].y) ):
				continue
			cell_prob1 = self.my_map.get_cell(self.particle_array[i].x, self.particle_array[i].y)
			cell_prob2 = self.true_map.get_cell(self.particle_array[i].x, self.particle_array[i].y)
			if (np.isnan(cell_prob1) or cell_prob2 == 1.0):
				self.particle_array[i].weight = 0.0
				continue

			pz_array = []
			for j in range (10):
				angle = self.particle_array[i].theta + (self.scan_data.angle_min + (self.scan_data.angle_increment * j))
				x = self.particle_array[i].x + (self.scan_data.ranges[j] * np.cos(angle))
				y = self.particle_array[i].y + (self.scan_data.ranges[j] * np.sin(angle))
				
				if( np.isnan(x) or np.isnan(y) or np.isinf(x) or np.isinf(y) ):
					#lp = 0
					pz = 0
				else:
					lp = self.my_map.get_cell( x, y )
					if( np.isnan(lp) ):
						pz = 0
					else:
						pz = (self.laser_z_hit * lp) + self.laser_z_rand

				# if( np.isnan(lp) ):
				# 	#lp = 0
				# 	pz = 0

				#pz = (self.laser_z_hit * lp) + self.laser_z_rand
				pz_array.append(pz)
			
			p_tot = 0
			for a in range (len(pz_array)):
				value_cubed = math.pow(pz_array[a],3)
				if(np.isnan(value_cubed)):
					continue
				else:	
					p_tot = p_tot + value_cubed

			#sigmoid function for calculating weight
			self.particle_array[i].weight = self.particle_array[i].weight * (1.0/(1.0+math.pow(math.e, -1*p_tot)))

		self.normalize_weight()	
				

	def create_particles(self):
		self.particle_array = []
		self.pose_array = PoseArray()		
		self.pose_array.header.stamp = rospy.Time.now()
		self.pose_array.header.frame_id = 'map'
		self.pose_array.poses = []
		for i in range (self.num_particles):
			# x and y are coordinates
			col = r.randint(0, self.my_map_width)
			row = r.randint(0, self.my_map_height)
			x, y = self.my_map.cell_position (row,col)
			theta = math.radians(r.random() * 360)
			pose = get_pose (x,y,theta)	
			particle = Particle()
			particle.x = x
			particle.y = y
			particle.theta = theta
			particle.pose = pose
			particle.weight = (1.0/self.num_particles)
			self.particle_array.append(particle)
			self.pose_array.poses.append(pose)
		
		rospy.sleep(1)	
		self.particle_pose_pub.publish(self.pose_array)


	def handle_map_data(self, data):
		if( self.handle_map_first_called == 1 ):
			self.my_map = Map(data)
			self.true_map = Map(data)
			self.my_map_width = self.my_map.width
			self.my_map_height = self.my_map.height
			self.handle_map_first_called = 0
			#print "handle map is called"	
		

	def make_all_moves(self):
		self.num_moves = len(self.move_list)	
		for i in range (self.num_moves):
			#print "make_move"
			self.make_move()
			rospy.sleep(1)
			self.result_update_pub.publish(True)
			self.move_made = self.move_made + 1


	def make_move(self):
		i = self.move_made
		#add noise to x, y, theta when first move
		move_function(self.move_list[i][0], 0)
		for j in range(len(self.particle_array)):
			self.particle_array[j].theta += math.radians(self.move_list[i][0])
			self.particle_array[i].theta = self.particle_array[i].theta % (math.radians(360))
		    
		for a in range(self.move_list[i][2]):
			move_function(0, self.move_list[i][1])
			self.particle_update(i)
			if(i == 0):
				self.particle_add_noise_first_move()

			self.process_scan_data()	
			self.resampling_particle()

	
	def normalize_weight(self):
		total = 0
		
		for k in range (self.num_particles):
			total += self.particle_array[k].weight

		for j in range (self.num_particles):
			self.particle_array[j].weight /= total
		

		total = 0
		for m in range (self.num_particles):
			total += self.particle_array[m].weight
		#print "total should be 1: ", total


	def resampling_particle(self):

		#print "resampling"
		self.weight_array = []
		new_array = []
		for i in range (self.num_particles):
			self.weight_array.append(self.particle_array[i].weight)

		for j in range (self.num_particles):
			particle = np.random.choice(self.particle_array, None, True, self.weight_array)
			new_particle = Particle()	
			new_particle.x = particle.x
			new_particle.y = particle.y
			new_particle.theta = particle.theta
			new_particle.weight = particle.weight
			new_particle.pose = particle.pose
			new_x = self.add_resample_noise(new_particle.x, self.resample_sigma_x)
			new_y = self.add_resample_noise(new_particle.y, self.resample_sigma_y)
			new_theta = self.add_resample_noise(new_particle.theta, self.resample_sigma_theta)
			new_pose = get_pose(new_x, new_y, new_theta)
			new_particle.x = new_x
			new_particle.y = new_y
			new_particle.theta = new_theta
			new_particle.pose = new_pose
			new_array.append(new_particle)
		
		for m in range (self.num_particles):
			self.particle_array[m] = new_array[m]
			self.pose_array.poses[m] = new_array[m].pose
		
		#self.normalize_weight()	
		# publish the pose array
		rospy.sleep(1)
		self.particle_pose_pub.publish(self.pose_array)


	def particle_update (self, i):
		for a in range (self.num_particles):
			update_x = self.particle_array[a].x + self.move_list[i][1] * np.cos(self.particle_array[a].theta)
			update_y = self.particle_array[a].y + self.move_list[i][1] * np.sin(self.particle_array[a].theta)
			self.particle_array[a].x = update_x
			self.particle_array[a].y = update_y
			self.particle_array[a].pose = get_pose(update_x, update_y, self.particle_array[a].theta)


	def particle_add_noise_first_move(self):
		for a in range (self.num_particles):
			self.particle_array[a].x = self.add_first_move_noise(self.particle_array[a].x, self.first_move_sigma_x)
			self.particle_array[a].y = self.add_first_move_noise(self.particle_array[a].y, self.first_move_sigma_y)
			self.particle_array[a].theta = self.add_first_move_noise(self.particle_array[a].theta, self.first_move_sigma_angle)
			self.particle_array[a].pose = get_pose(self.particle_array[a].x, self.particle_array[a].y, self.particle_array[a].theta)
			
	
	def add_first_move_noise(self, coordinate, sd):
		# noise = r.gauss(0, sd)*100.)/100.
		noise = r.gauss(0, sd)
		added_noise = coordinate + noise
		return added_noise

	def add_resample_noise(self, coordinate, sd):
		# noise = math.ceil(r.gauss(0, sd) * 100.) /100.
		noise = r.gauss(0, sd)
		added_noise = coordinate + noise
		return added_noise
	
	def construct_field(self):
		self.kdtree_array = []
		for i in range (self.my_map_height):
			for j in range (self.my_map_width):
				x, y = self.my_map.cell_position(i,j)
			        value = self.my_map.get_cell(x, y)	
				if( value == 1.0 ):
					self.kdtree_array.append([x, y])	

		self.kdtree = KDTree (self.kdtree_array)
		self.update_field()


	def update_field(self):
	
		for i in range (self.my_map_height):
			for j in range (self.my_map_width):
				coordinate = self.my_map.cell_position(i,j)
				dist, idx = self.kdtree.query([[coordinate[0],coordinate[1]]], k=1)
				new_value = self.calculate (dist)
				coordinate = self.my_map.cell_position(i,j)
				#if( self.my_map.get_cell(coordinate[0], coordinate[1]) == 0.0):
				self.my_map.set_cell(coordinate[0], coordinate[1], new_value)


	def calculate (self, distance):
		power = (-1.0 * ((distance*distance)/(2.0*self.laser_sigma_hit*self.laser_sigma_hit)))
		value = math.pow( math.e, power)
		return value	
Beispiel #2
0
class Robot():
    def __init__(self):
        """ This will read the config files and set up the different
        listeners and what not
        """
        self.config = read_config()
        self.moveList = self.config['move_list']
        self.particles = list()
        self.isMapInit = False

        random.seed(self.config['seed'])
        np.random.seed(self.config['seed'])

        self.baseMap = None
        self.likelihood_field = None

        self.laserScanFlag = False
        self.laserScanData = None

        self.robotInit()

        rospy.init_node("robot")

        self.start()

    def robotInit(self):
        """ Init Subscribers and Publishers"""
        self.mapSub = rospy.Subscriber(
                "/map",
                OccupancyGrid,
                self.mapInit
        )
        self.laserScanSub = rospy.Subscriber(
                "/base_scan",
                LaserScan,
                self.laserScanUpdate
        )
#Do I need latch? TODO
        self.particleCloudPub = rospy.Publisher(
                "/particlecloud",
                PoseArray,
                queue_size = 10
        )
        self.likelihoodFieldPub = rospy.Publisher(
                "/likelihood_field",
                OccupancyGrid,
                queue_size = 10,
                latch = True
        )
        self.resultUpdatePub = rospy.Publisher(
                "/result_update",
                Bool,
                queue_size = 10
        )
        self.simCompletePub = rospy.Publisher(
                "/sim_complete",
                Bool,
                queue_size = 10
        )

    def mapInit(self, mapData):
        if not self.isMapInit:
            self.isMapInit = True
            self.baseMap = Map(mapData)
            self.likelihood_field = Map(mapData)

            lsh = self.config['laser_sigma_hit']

            width = self.baseMap.width
            height = self.baseMap.height

            occPoints = list()
            points = list()
            unoccPoints = list()

            for r in range(height):
                for c in range(width):
                    x, y = self.baseMap.cell_position(r, c)
                    if self.baseMap.get_cell(x, y) == 1:
                        occPoints.append((x,y))
                    else:
                        unoccPoints.append((x,y))
                    points.append((x,y))

            self.occPointsSet = set(occPoints)
            occPoints = np.array(occPoints)
            points = np.array(points)

            self.occPoints = occPoints
            self.points = points
            self.unoccPoints = unoccPoints

            self.tree = KDTree(occPoints)
            distance, index = self.tree.query(points, k = 1)

            print "Points ", len(points), " should match ", width*height

            for d, i, p in zip(distance, index, points):
                x, y = p
                self.likelihood_field.set_cell(x, y, likeProb(d, lsh))

            self.likelihoodFieldPub.publish(self.likelihood_field.to_message())
            self.particleInit()

    def particleInit(self):
        default_weight = 1.0/(self.config["num_particles"])
        numPart = self.config["num_particles"]

        randPoints = np.random.choice(range(len(self.unoccPoints)), numPart, replace=True)
        randPoints = [self.unoccPoints[i] for i in randPoints]
        for x, y in randPoints:
            p = Particle(x, y, m.pi*random.random(), default_weight)
            self.particles.append(p)
        self.publishParticles()
        self.move()

    def publishParticles(self):
        pose_array = self.poseArrayTemplate()
        for p in self.particles:
            pose_array.poses.append(p.get_pose())
        self.particleCloudPub.publish(pose_array)

    def laserScanUpdate(self, laserScanMessage):
        if not self.laserScanFlag:
            self.laserScanFlag = True
            self.laserScanData = laserScanMessage

    def move(self):
        moves = self.config["move_list"]
        for i, (a, d, n) in enumerate(moves):
            print "Move %d, Turn at Angle %.2f, then move %.2f meters %d times." % (i, a, d, n)
            print "First turn at angle %.2f" % a
            helper_functions.move_function(a, 0)
            self.particles = self.updateMove(self.particles, 0.0, a)
            self.publishParticles()

            self.particles = self.commit(self.particles)
            self.publishParticles()

            for __ in xrange(n):
                print "Moving forward with distance %d" % d
                helper_functions.move_function(0, d)

                self.particles = self.updateMove(self.particles, d, 0.0)
                self.publishParticles()

                self.particles = self.commit(self.particles)
                self.publishParticles()
            self.resultUpdatePub.publish(True)
        self.simCompletePub.publish(True)
        rospy.sleep(10)
        rospy.signal_shutdown("sim complete")

    def updateMove(self, parts, d, t):
	p = parts[0]
        toret = list()
        rad = (m.pi * t)/180.0
        for p in parts:
            theta = p.theta + rad
            x = p.x + d*m.cos(p.theta)
            y = p.y + d*m.sin(p.theta)
	    particle = Particle(x, y, theta, p.weight)
            toret.append(particle)
        return toret

    def reweight(self, parts):
        zhit = self.config["laser_z_hit"]
        zrand = self.config["laser_z_rand"]
        lsd = self.getLaserScanData()
        increment = lsd.angle_increment
	startAngle = lsd.angle_min
        newParts = list()
        for p in parts:
            x, y, theta, q = p.x, p.y, p.theta, p.weight
            iswall = self.baseMap.get_cell(x, y)
            if m.isnan(iswall):
                q = 0.0
            elif iswall == 1.0:
                q = 0.0

	    currincrement = 0.0
            for r in lsd.ranges:
                if q == 0.0:
                    break
                currx = x + r * m.cos(theta + startAngle + currincrement)
                curry = y + r * m.sin(theta + startAngle + currincrement)
                prob = self.likelihood_field.get_cell(currx, curry)
                if m.isnan(prob):
                    prob = 0.0
                q *= zhit * prob + zrand
                q += zrand
                currincrement += increment
	    p.weight = q
            newParts.append(p)
        return self.normalize(newParts)

    def normalize(self, parts):
	#ALL WEIGHTS GETTING SO SMALL ITS BECOMING 0
        weights = [p.weight * 1000 if not m.isnan(p.weight) else 0.0 for p in parts]
        normalizer = sum(weights)
        if m.isnan(normalizer):
            print "GOFFYY!!!!"
        else:
            weights = [w/normalizer if not m.isnan(w/normalizer) else 0.0 for w in weights]
            #why do this?! you don't use it again...
	    print "TTTTTT", weights.count(0), len(weights)
	    normalizer = sum(weights)
        for i, __ in enumerate(parts):
            parts[i].weight = weights[i]
        return parts

    def resample(self, parts):
        res = list()
        weights = [p.weight for p in parts]
        print "SUMMM", sum(weights)
        randPoints = np.random.choice(parts, self.config["num_particles"], replace=True, p=weights)
        for p in randPoints:
            noise_x = random.gauss(0, self.config["resample_sigma_x"])
            noise_y = random.gauss(0, self.config["resample_sigma_y"])
            noise_theta = random.gauss(0, self.config["resample_sigma_angle"])

            p.x += noise_x
            p.y += noise_y
            p.theta += noise_theta

            res.append(p)
        return res


    def commit(self, parts):
        return self.resample(self.reweight(parts))


    def getLaserScanData(self):
        self.laserScanFlag = False
        while not self.laserScanFlag:
            continue
        return self.laserScanData

    def poseArrayTemplate(self):
        pose_array = PoseArray()
        pose_array.header.stamp = rospy.Time.now()
        pose_array.header.frame_id = 'map'
        pose_array.poses =[]
        return pose_array

    def start(self):
        rospy.sleep(5)
        rospy.spin()
Beispiel #3
0
class Robot():
    def __init__(self):
        self.config = read_config()
        rospy.init_node('robot')
        self.pose_array = PoseArray()
        self.pose_array.header.stamp = rospy.Time.now()
        self.pose_array.header.frame_id = 'map'
        self.pose_array.poses = []
        self.moves = self.config["move_list"]
        #Particle update values to use
        self.isFirstMove = True
        self.first_sigma_x = read.config["first_move_sigma_x"]
        self.first_sigma_y = read.config["first_move_sigma_y"]
        self.first_sigma_angle = read.config["first_move_sigma_angle"]
        self.resample_sigma_x = read.config["resample_sigma_x"]
        self.resample_sigma_y = read.config["resample_sigma_y"]
        self.resample_sigma_angle = read.config["resample_sigma_angle"]

        laser_sub = rospy.Subscriber("/base_scan", LaserScan,
                                     self.sensorUpdate)
        self.likely_pub = rospy.Publisher("/likelihood_field",
                                          OccupancyGrid,
                                          queue_size=10,
                                          latch=True)
        self.pose_pub = rospy.Publisher("/particlecloud",
                                        PoseArray,
                                        queue_size=10)
        map_sub = rospy.Subscriber("/map", OccupancyGrid, self.mapCallBack)
        rospy.sleep(1)
        self.width = self.map.width
        self.height = self.map.height

        # particle init
        for i in range(0, self.config["num_particles"]):
            x = random.randint(0, self.width)
            y = random.randint(0, self.height)
            theta = random.uniform(0, 2 * m.pi)
            obstacle = self.map.get_cell(x, y)
            if (obstacle < 0.5):
                pose = get_pose(x, y, theta)
                self.pose_array.poses.append(pose)
            else:
                i -= 1
        rospy.sleep(1)
        self.pose_pub.publish(self.pose_array)

        self.moveRobot(self.moves)

        rospy.spin()

    def mapCallBack(self, message):
        # 2
        self.map = Map(message)
        self.width = self.map.width
        self.height = self.map.height
        sig = self.config['laser_sigma_hit']
        coordinates = []
        queryPts = []
        rospy.sleep(1)
        # 3
        for col in range(0, self.width):
            for row in range(0, self.height):
                x, y = self.map.cell_position(row, col)
                cellVal = self.map.get_cell(x, y)
                if (cellVal > 0.5):
                    coordinates.append([x, y])
        self.kdt = KDTree(coordinates)

        for col in range(0, self.width):
            for row in range(0, self.height):
                dist, ind = self.kdt.query([col, row], k=1)
                gauss = (1 /
                         (sig * m.sqrt(2 * m.pi))) * ((m.e)**-(((dist)**2) /
                                                               (2 * (sig**2))))
                self.map.set_cell(col, row, gauss)
        self.likely_pub.publish(self.map.to_message())

    def sensorUpdate(self, laser):
        self.laserMsg = laser

    def moveRobot(self, motion_cmd):
        for i in range(0, len(self.moves)):  #4
            motion = self.moves[i]
            a = motion[0]
            d = motion[1]
            n = motion[2]
            move_function(a, 0)
            for t in range(0, n):
                move_function(0, d)
                updateParticles(a, d)

    def updateParticles(a, d):
        new_pose_array = []
        for j in range(0, self.config["num_particles"]):
            particle = self.pose_array.poses[j]
            x = particle[0]
            y = particle[1]
            theta = particle[2]
            if (self.isFirstMove):
                x = x + random.gauss(0, first_move_sigma_x)
                y = y + random.gauss(0, first_move_sigma_y)
                theta = theta + random.gauss(0, first_move_sigma_theta)
                self.isFirstMove = False
            x = x + d * math.cos(a)
            y = y + d * math.sin(a)
            theta = theta + a
            pose = get_pose(x, y, theta)
            new_pose_array.append(pose)

        self.pose_array.poses = new_pose_array
        #Reweight

    def motionUpdate(self, motion_cmd, particle):
        a = motion_cmd[0]
        d = motion_cmd[1]
        n = motion_cmd[2]
Beispiel #4
0
class Robot():
    def __init__(self):
        self.config = read_config()
        rospy.init_node('robot')
        self.pose_array = PoseArray()
        self.pose_array.header.stamp = rospy.Time.now()
        self.pose_array.header.frame_id = 'map'
        self.pose_array.poses = []

        self.move_list = self.config["move_list"]
        #Particle update values to use
        self.first_sigma_x = self.config["first_move_sigma_x"]
        self.first_sigma_y = self.config["first_move_sigma_y"]
        self.first_sigma_angle = self.config["first_move_sigma_angle"]
        self.resample_sigma_x = self.config["resample_sigma_x"]
        self.resample_sigma_y = self.config["resample_sigma_y"]
        self.resample_sigma_angle = self.config["resample_sigma_angle"]
        self.isFirstMove = True

        self.particleList = []
        self.posePtr = []
        self.tally = 0
        

        laser_sub = rospy.Subscriber(
            "/base_scan",
            LaserScan,
            self.senseCallBack
        )
        self.likely_pub = rospy.Publisher(
            "/likelihood_field",
            OccupancyGrid,
            queue_size = 10,
            latch = True
        )
        self.pose_pub = rospy.Publisher(
            "/particlecloud",
            PoseArray,
            queue_size = 10
        )
        self.result_pub = rospy.Publisher(
            "/result_update",
            Bool,
            queue_size = 10
        )
        self.sim_pub = rospy.Publisher(
            "/sim_complete",
            Bool,
            queue_size = 10
        )
        map_sub = rospy.Subscriber(
            "/map",
            OccupancyGrid,
            self.mapCallBack
        )
        rospy.sleep(1)
        self.width = self.map.width
        self.height = self.map.height

        # particle init
        i = 0
        self.numParticles = self.config["num_particles"]
        while(i < self.numParticles):
            i += 1
            x = random.randint(0, self.width)
            y = random.randint(0, self.height)
            theta = random.uniform(0, 2*m.pi)
            obstacle = self.map.get_cell(x,y)
            
            if(obstacle < 0.5):
                pose = get_pose(x,y,theta)
                self.pose_array.poses.append(pose)
                p = Particle(x,y,theta, 1)
                self.particleList.append(p)
            else:
                i -= 1
        self.pose_pub.publish(self.pose_array)
        rospy.wait_for_message("/likelihood_field", OccupancyGrid)
        self.moveRobot()
        self.sim_pub.publish(True)
        rospy.is_shutdown()
        rospy.spin()

    def sigmoid(self, x):
        y = (1.0 / (1.0 + m.exp(-x)))
        return y

    def mapCallBack(self, message):
        self.map = Map(message)
        self.whocares = Map(message)
        self.width = self.map.width
        self.height = self.map.height
        self.sig = self.config['laser_sigma_hit']
        coordinates = []
        rospy.sleep(1)

        for col in range(0, self.width):
            for row in range(0, self.height):
                x, y = self.map.cell_position(row, col)
                self.cellVal = self.map.get_cell(x,y)
                if (self.cellVal > 0.5):
                    coordinates.append([x,y])
        self.kdt = KDTree(coordinates)

        for col in range(0, self.width):
            for row in range(0, self.height):
                dist, ind = self.kdt.query([col,row], k=1)
                gauss = (1/(self.sig*m.sqrt(2*m.pi)))*((m.e)**-(((dist)**2)/(2*(self.sig**2))))
                self.map.set_cell(col, row, gauss)
        self.likely_pub.publish(self.map.to_message())

    def senseCallBack(self, laser):
        self.lsr = laser

    def moveRobot(self):
        for t in range(0, len(self.move_list)):
            move = self.move_list[t]
            #move robot
            a = move[0]
            d = move[1]
            n = move[2]
            move_function(a,0)
            self.first = True
            for s in range(0, n):
                move_function(0, d)
                self.motion_update(move)
                self.first = False
                self.isFirstMove = False
                self.pose_array.poses = self.posePtr
                self.pose_pub.publish(self.pose_array)
                self.posePtr = []
                self.sensor_update()
                self.resample()
            self.result_pub.publish(True)

    #For one particle
    def motion_update(self, mv):
        for i in range(0, len(self.particleList)):
            part_in = self.particleList[i]
            x = part_in.getX()
            y = part_in.getY()
            theta = part_in.getTheta()
            weight = part_in.getWeight()
            if (self.isFirstMove):
                x = x + random.gauss(0, self.first_sigma_x)
                y = y + random.gauss(0, self.first_sigma_y)
                theta = theta + random.gauss(0, self.first_sigma_angle)
            if (self.first):
                theta = theta + m.radians(mv[0])
            x = x + mv[1] * m.cos(theta)
            y = y + mv[1] * m.sin(theta)
            new_pose = get_pose(x,y,theta)
            self.posePtr.append(new_pose)
            part_in.setX(x)
            part_in.setY(y)
            part_in.setTheta(theta)    
            if (m.isnan(self.whocares.get_cell(x,y)) or self.whocares.get_cell(x,y) == 1.0):
                part_in.setWeight(0.0)

    def sensor_update(self):
        z_rand = self.config["laser_z_rand"]
        z_hit = self.config["laser_z_hit"]
        normalizer = 0
        #Laser Scan
        for p in range(0, len(self.particleList)):
            particle = self.particleList[p]
            if(self.map.get_cell(particle.getX(),particle.getY()) == 1):
                particle.setWeight(0.0)
            ptot = 0
            noNAN = 0
            for l in range(0,len(self.lsr.ranges)):
                scan = self.lsr.ranges[l]
                if(scan != self.lsr.range_min and scan != self.lsr.range_max):
                    angle = self.lsr.angle_min + (self.lsr.angle_increment * l) + particle.getTheta()
                    x_pos = scan * m.cos(angle) + particle.getX()
                    y_pos = scan * m.sin(angle) + particle.getY()
                    lp = self.map.get_cell(x_pos,y_pos)
                    if (m.isnan(lp)):
                        noNAN += 1
                    else: 
                        if (noNAN > (len(self.lsr.ranges)*.75)):
                            particle.setWeight(0.0)
                        pz = (z_hit * lp) + z_rand
                        ptot += (pz**2)
                    
            old_weight = particle.getWeight() 
            new_weight = old_weight * self.sigmoid(ptot)
            normalizer += new_weight
            new_particle = Particle(particle.getX(),particle.getY(),particle.getTheta(),new_weight)
            self.particleList[p] = new_particle
        
        for q in range(0, len(self.particleList)):
            particle = self.particleList[q]
            weight = particle.getWeight() / normalizer
            particle.setWeight(weight)

    def resample(self):
        good_weights = []
        good_particles = []
        for w in range(0, len(self.particleList)):
            particle = self.particleList[w]
            value = self.whocares.get_cell(particle.getX(),particle.getY())
            if (not (value == 1.0 or m.isnan(value))):
                good_particles.append(self.particleList[w])
                good_weights.append(self.particleList[w].getWeight())
        
        # new_particles = np.random.choice(self.particleList, self.numParticles, True, weights)
        for p in range(0,len(self.particleList)):
            particle = self.particleList[p]
            value = self.whocares.get_cell(particle.getX(),particle.getY())
            if (value == 1.0 or m.isnan(value)):
                dingledangle = np.random.choice(good_particles, 1, True, good_weights)
                particle = dingledangle[0]
            x = particle.getX() + random.gauss(0,self.resample_sigma_x)
            y = particle.getY() + random.gauss(0,self.resample_sigma_y)
            theta = particle.getTheta() + random.gauss(0,self.resample_sigma_angle)
            new_particle = Particle(x,y,theta,particle.getWeight())
            self.particleList[p] = new_particle