Beispiel #1
0
def Supervised(filename, old_files = [], stop='', stopat=1, error='none', interval = 100000, starting =1, seed=0,
               step =10, learner='svm_linear', boost=None):
    print("FILENAME: ", filename, "OLDFILES: ", len(old_files))
    stopat = float(stopat)
    np.random.seed(seed)

    read = MAR()
    read = read.create(filename, old_files)
    read.step = step

    read.interval = interval
    read.seed = seed

    if boost:
        util.vote(read, clf_name=boost, seed=seed, all=False, temp=str(seed) + filename)
    return
    num2 = read.get_allpos()
    target = int(num2 * stopat)
    if stop == 'est':
        read.enable_est = True
    else:
        read.enable_est = False

    if boost == None:
        read.train_supervised(learner, seed)
    pos, neg, total = read.get_numbers()

    if boost:
        read.query_boost()
    else:
        read.query_supervised()

    read.record['est'][0] = read.est_num

    while True:
        pos, neg, total = read.get_numbers()

        # try:
        #     print("%d, %d, %d" %(pos,pos+neg, read.est_num))
        # except:
        #     print("%d, %d" %(pos,pos+neg))

        if pos + neg >= total:
            break

        # if pos >= target and (pos+neg) >= total * .22 and read.enable_est and read.est_num*stopat<= pos:
        #     break
        if boost:
            ids = read.query_boost()[:read.step]
        else:
            ids = read.query_supervised()[:read.step]
        read.code_batch(ids)
    return read
Beispiel #2
0
def TEST_AL(filename,
            old_files=[],
            stop='est',
            stopat=1,
            error='none',
            interval=100000,
            starting=1,
            seed=0,
            step=10):
    stopat = float(stopat)
    thres = 0
    counter = 0
    pos_last = 0
    np.random.seed(seed)

    read = MAR()
    read = read.create(filename, old_files)
    read.step = step

    read.interval = interval

    num2 = read.get_allpos()
    target = int(num2 * stopat)
    if stop == 'est':
        read.enable_est = True
    else:
        read.enable_est = False

    while True:
        pos, neg, total = read.get_numbers()
        try:
            print("%d, %d, %d" % (pos, pos + neg, read.est_num))
        except:
            print("%d, %d" % (pos, pos + neg))

        if pos + neg >= total:
            break

        if pos < starting or pos + neg < thres:
            for id in read.random():
                read.code_error(id, error=error)
        else:
            a, b, c, d = read.train(weighting=True, pne=True)
            if pos >= target and read.est_num * stopat <= pos:
                break
            for id in c:
                read.code_error(id, error=error)
    # read.export()
    # results = analyze(read)
    # print(results)
    # read.plot()
    return read
Beispiel #3
0
def Supervised(filename,
               old_files=[],
               stop='est',
               stopat=1,
               error='none',
               interval=100000,
               starting=1,
               seed=0,
               step=10):
    stopat = float(stopat)
    np.random.seed(seed)

    read = MAR()
    read = read.create(filename, old_files)
    read.step = step

    read.interval = interval

    num2 = read.get_allpos()
    target = int(num2 * stopat)
    if stop == 'est':
        read.enable_est = True
    else:
        read.enable_est = False

    read.train_supervised()
    pos, neg, total = read.get_numbers()

    read.query_supervised()
    read.record['est'][0] = read.est_num

    while True:
        pos, neg, total = read.get_numbers()
        try:
            print("%d, %d, %d" % (pos, pos + neg, read.est_num))
        except:
            print("%d, %d" % (pos, pos + neg))

        if pos + neg >= total:
            break

        if pos >= target and read.est_num * stopat <= pos:
            break
        for id in read.query_supervised()[:read.step]:
            read.code_error(id, error=error)
    return read
Beispiel #4
0
def Boosting(filename, old_files = [], stop='', stopat=1, error='none', interval = 100000, starting =1, seed=0, step =10):
    print("FILENAME: ", filename, "OLDFILES: ", len(old_files))
    stopat = float(stopat)
    np.random.seed(seed)

    read = MAR()
    read = read.create(filename,old_files)
    read.step = step

    read.interval = interval

    util.vote(read)

    num2 = read.get_allpos()
    target = int(num2 * stopat)
    if stop == 'est':
        read.enable_est = True
    else:
        read.enable_est = False

    pos, neg, total = read.get_numbers()


    read.query_boost()
    read.record['est'][0]= read.est_num


    while True:
        pos, neg, total = read.get_numbers()
        try:
            print("%d, %d, %d" %(pos,pos+neg, read.est_num))
        except:
            print("%d, %d" %(pos,pos+neg))

        if pos + neg >= total:
            break

        if read.enable_est and read.est_num*stopat<= pos:
            break
        for id in read.query_boost()[:read.step]:
            read.code_error(id, error=error)
    return read
Beispiel #5
0
def test_semi(filename="Hall.csv"):
    num = 20
    read = MAR()
    read = read.create(filename)
    poses = np.where(np.array(read.body['label']) == "yes")[0]
    negs = np.where(np.array(read.body['label']) == "no")[0]
    pos_sel = np.random.choice(poses, num, replace=False)
    neg_sel = np.random.choice(negs, num*10, replace=False)

    for id in pos_sel:
        read.code_error(id)
    for id in neg_sel:
        read.code_error(id)
    read.enable_est = True
    read.get_numbers()
    a,b,c,d = read.train()
    set_trace()
Beispiel #6
0
def active_learning(filename,
                    query='',
                    stop='true',
                    stopat=1.00,
                    error='none',
                    interval=100000,
                    seed=0):
    stopat = float(stopat)
    thres = 0
    starting = 1
    counter = 0
    pos_last = 0
    np.random.seed(seed)

    read = MAR()
    read = read.create(filename)
    # random sampling or by querying similar documents
    # self.bm is provided with a list or a view of a dict's value which is not sorted
    read.BM25(query.strip().split('_'))

    # get the rest #pos documents
    num2 = read.get_allpos()
    target = int(
        num2 * stopat
    )  # stopat is 1. Is it the minum num of pos to activate svm training ?
    if stop == 'est':  # stop = 'true'
        read.enable_est = True
    else:
        read.enable_est = False  # will excute this line

    while True:
        pos, neg, total = read.get_numbers()
        try:
            print("%d, %d, %d" %
                  (pos, pos + neg, read.est_num))  # what is est_num ?
        except:
            print("%d, %d" % (pos, pos + neg))  # execute this line

        if pos + neg >= total:  # do not go inside
            if stop == 'knee' and error == 'random':
                coded = np.where(
                    np.array(read.body['code']) != "undetermined")[0]
                seq = coded[np.argsort(read.body['time'][coded])]
                part1 = set(seq[:read.kneepoint * read.step]) & set(
                    np.where(np.array(read.body['code']) == "no")[0])
                part2 = set(seq[read.kneepoint * read.step:]) & set(
                    np.where(np.array(read.body['code']) == "yes")[0])
                for id in part1 | part2:
                    read.code_error(id, error=error)
            break

        if pos < starting or pos + neg < thres:  # the second condition doesn't work
            for id in read.BM25_get(
            ):  # select a set of candidates from self.pool
                read.code_error(
                    id, error=error
                )  # simulate human labeling error, default is no error
        else:
            a, b, c, d = read.train(weighting=True, pne=True)
            if stop == 'est':
                if stopat * read.est_num <= pos:
                    break
            elif stop == 'soft':
                if pos >= 10 and pos_last == pos:
                    counter = counter + 1
                else:
                    counter = 0
                pos_last = pos
                if counter >= 5:
                    break
            elif stop == 'knee':
                if pos >= 10:
                    if read.knee():
                        if error == 'random':
                            coded = np.where(
                                np.array(read.body['code']) != "undetermined"
                            )[0]
                            seq = coded[np.argsort(
                                np.array(read.body['time'])[coded])]
                            part1 = set(
                                seq[:read.kneepoint * read.step]) & set(
                                    np.where(
                                        np.array(read.body['code']) == "no")
                                    [0])
                            part2 = set(
                                seq[read.kneepoint * read.step:]) & set(
                                    np.where(
                                        np.array(read.body['code']) == "yes")
                                    [0])
                            for id in part1 | part2:
                                read.code_error(id, error=error)
                        break
            else:
                if pos >= target:
                    break
            if pos < 10:
                for id in a:
                    read.code_error(id, error=error)
            else:
                for id in c:
                    read.code_error(id, error=error)
    return read
def active_learning(filename,
                    query='',
                    stop='true',
                    stopat=0.95,
                    error='none',
                    interval=100000,
                    seed=0):
    stopat = float(stopat)
    thres = 0
    starting = 1
    counter = 0
    pos_last = 0
    np.random.seed(seed)
    read = MAR()
    read = read.create(filename)
    read.interval = interval

    read.BM25(query.strip().split('_'))

    num2 = read.get_allpos()
    target = int(num2 * stopat)
    print("number of target, true/close here:", target)

    if stop == 'est':
        read.enable_est = True
    else:
        read.enable_est = False

    while True:
        pos, neg, total = read.get_numbers()
        try:
            print("%d, %d, %d" % (pos, pos + neg, read.est_num))
        except:
            print("%d, %d" % (pos, pos + neg))

        if pos + neg >= total:
            if stop == 'knee' and error == 'random':
                coded = np.where(
                    np.array(read.body['code']) != "undetermined")[0]
                seq = coded[np.argsort(read.body['time'][coded])]
                part1 = set(seq[:read.kneepoint * read.step]) & set(
                    np.where(np.array(read.body['code']) == "no")[0])
                part2 = set(seq[read.kneepoint * read.step:]) & set(
                    np.where(np.array(read.body['code']) == "yes")[0])
                for id in part1 | part2:
                    read.code_error(id, error=error)
            break

        if pos < starting or pos + neg < thres:
            for id in read.BM25_get():
                read.code_error(id, error=error)
        else:
            a, b, c, d = read.train(weighting=True, pne=True)
            if stop == 'est':
                if stopat * read.est_num <= pos:
                    break
            elif stop == 'soft':
                if pos >= 10 and pos_last == pos:
                    counter = counter + 1
                else:
                    counter = 0
                pos_last = pos
                if counter >= 5:
                    break
            elif stop == 'knee':
                if pos >= 10:
                    if read.knee():
                        if error == 'random':
                            coded = np.where(
                                np.array(read.body['code']) != "undetermined"
                            )[0]
                            seq = coded[np.argsort(
                                np.array(read.body['time'])[coded])]
                            part1 = set(
                                seq[:read.kneepoint * read.step]) & set(
                                    np.where(
                                        np.array(read.body['code']) == "no")
                                    [0])
                            part2 = set(
                                seq[read.kneepoint * read.step:]) & set(
                                    np.where(
                                        np.array(read.body['code']) == "yes")
                                    [0])
                            for id in part1 | part2:
                                read.code_error(id, error=error)
                        break
            else:
                if pos >= target:
                    break
            if pos < 10:
                for id in a:
                    read.code_error(id, error=error)
            else:
                for id in c:
                    read.code_error(id, error=error)
    set_trace()
    return read
Beispiel #8
0
from __future__ import print_function, division
import sys, os

root = os.getcwd().split("src")[0] + "src/src/util"
sys.path.append(root)
from mar import MAR
from pdb import set_trace

if __name__ == "__main__":
    data_path = "Hall.csv"
    target_recall = 0.95
    thres = 10
    query = "defect prediction"
    read = MAR()
    read = read.create(data_path)
    read.enable_est = True
    if query:
        read.BM25(query.split())
    while True:
        pos, neg, total = read.get_numbers()
        try:
            print("%d, %d, %d" % (pos, pos + neg, read.est_num))
        except:
            print("%d, %d" % (pos, pos + neg))

        if pos + neg >= total:
            break

        if pos < 1:
            if query:
                ids, scores = read.BM25_get()