Beispiel #1
0
    def test_randomized_pca_inverse(self):
        # Test that randomized PCA is inversible on dense data
        rng = np.random.RandomState(0)
        n, p = 50, 3
        X = mt.tensor(rng.randn(n, p))  # spherical data
        X[:, 1] *= .00001  # make middle component relatively small
        X += [5, 4, 3]  # make a large mean

        # same check that we can find the original data from the transformed signal
        # (since the data is almost of rank n_components)
        pca = PCA(n_components=2, svd_solver='randomized',
                  random_state=0).fit(X)
        Y = pca.transform(X)
        Y_inverse = pca.inverse_transform(Y)
        assert_almost_equal(X.execute(), Y_inverse.execute(), decimal=2)

        # same as above with whitening (approximate reconstruction)
        pca = PCA(n_components=2,
                  whiten=True,
                  svd_solver='randomized',
                  random_state=0).fit(X)
        Y = pca.transform(X)
        Y_inverse = pca.inverse_transform(Y)
        relative_max_delta = (mt.abs(X - Y_inverse) / mt.abs(X).mean()).max()
        self.assertLess(relative_max_delta.execute(), 1e-5)
Beispiel #2
0
    def test_pca_inverse(self):
        # Test that the projection of data can be inverted
        rng = np.random.RandomState(0)
        n, p = 50, 3
        X = mt.tensor(rng.randn(n, p))  # spherical data
        X[:, 1] *= .00001  # make middle component relatively small
        X += [5, 4, 3]  # make a large mean

        # same check that we can find the original data from the transformed
        # signal (since the data is almost of rank n_components)
        pca = PCA(n_components=2, svd_solver='full').fit(X)
        Y = pca.transform(X)
        Y_inverse = pca.inverse_transform(Y)
        assert_almost_equal(X.execute(), Y_inverse.execute(), decimal=3)

        # same as above with whitening (approximate reconstruction)
        for solver in self.solver_list:
            pca = PCA(n_components=2, whiten=True, svd_solver=solver)
            pca.fit(X)
            Y = pca.transform(X)
            Y_inverse = pca.inverse_transform(Y)
            assert_almost_equal(X.execute(), Y_inverse.execute(), decimal=3)