Beispiel #1
0
 def topk_rbf(X, Y=None, n_neighbors=10, gamma=1e-5):
     nn = NearestNeighbors(n_neighbors=10, metric='euclidean', n_jobs=-1)
     nn.fit(X)
     W = -1 * mt.power(nn.kneighbors_graph(Y, mode='distance'), 2) * gamma
     W = mt.exp(W)
     assert W.issparse()
     return W.T
Beispiel #2
0
 def test_pca_score(self):
     # Test that probabilistic PCA scoring yields a reasonable score
     n, p = 1000, 3
     rng = np.random.RandomState(0)
     X = mt.tensor(rng.randn(n, p) * .1) + mt.array([3, 4, 5])
     for solver in self.solver_list:
         pca = PCA(n_components=2, svd_solver=solver)
         pca.fit(X)
         ll1 = pca.score(X)
         h = -0.5 * mt.log(2 * mt.pi * mt.exp(1) * 0.1**2) * p
         np.testing.assert_almost_equal((ll1 / h).to_numpy(), 1, 0)