def perform_draw(names, num_winners=1, num_iterations=32): for i in range(1,num_iterations): clear_screen() delay = e(i/float(num_iterations))-1.5 if delay < 0: delay = 0.1 candidates = random.sample(names, num_winners) print_message(", ".join(candidates)) sleep(delay) clear_screen() sleep(2.5) winners = random.sample(names, num_winners) if num_winners > 1: title = "Vinnerne" else: title = "Vinneren" message = title + " er: " + ", ".join(winners) + ". Gratulerer!" print_message(message, spaces=30) raw_input()
def node_output(inputs, weights): # weight[0] is bias weight activation = weights[0] for i in range(len(inputs)): activation += inputs[i] * weights[i + 1] try: # compute the simoid(sigmoid?) of the activation output = 1 / (1 + e(-1 * activation)) except OverflowError: # catch cases where e^-a overflows if activation < 0: output = 0 else: output = 1 return output
def score_plan(plan, const): """ Accepts a districting plan in the form of a networkx graph and scores it using two sub-scores: population balance and district contiguity. The score function takes the form of an energy function: e^-x. A parameterised constant is used to appropriately scale the results of the sub-scores """ # Get population score parameter pop_param = score_pop(plan) # Get contiguity score parameter contig_param = score_contig(plan) # Energy function with constant to adjust 'strength' of scoring score = e(-const * pop_param * contig_param) return score
def simulated_annealing(): current = INITIAL_POINT t = 0 while True: T = schedule(t) x, y = current if T == 0: print(F(current), t) return current angle = random.uniform(-180, 180) * math.pi / 180 next = (x + RADIUS * math.cos(angle), y + RADIUS * math.sin(angle)) dE = F(next) - F(current) if dE > 0: current = next else: p = e(dE / T) current = next if random.random() < p else current t = t + 1
def update_variance_winner(i, j, k): inner_first_para_upper = worker_quality[k][ 0] * worker_quality[k][1] * e(score[i]) * e(score[j]) inner_first_para_lower = pow( (worker_quality[k][0] * e(score[i]) + worker_quality[k][1] * e(score[j])), 2) inner_second_para = e( score[i]) * e(score[j]) / pow(e(score[i]) + e(score[j]), 2) max_candidate_one = 1 + \ pow(variance[i], 2) * (inner_first_para_upper / inner_first_para_lower - inner_second_para) max_candidate_two = 0.0001 result = pow(variance[i], 2) * max(max_candidate_one, max_candidate_two) return result
def simulatedAnnealing(M, N, D, W, start, end): # Takes Tmax and dT in to allow for experimentation. # When everything's done it'll only take the size of a the board, and eggs (M, N, k) State = Switchboard(M, N, D, W) # The State to be returned when optimal Temp = 0.07 dT = 0.00001 targetBoardEvaluation = 0.7 while (State.evaluateBoard() < targetBoardEvaluation): neighbours = State.generateNeighbours() newState = None # The best neighbour for neighbour in neighbours: # Loop through neighbours to find the best one if (neighbour.evaluateBoard() > newState): newState = neighbour q = ((newState.evaluateBoard()-State.evaluateBoard())/State.evaluateBoard()) p = math.min(1, math.e((-q)/Temp)) x = random.random() # Random number between 0 and 1 if (x > p ): State = newState else: State = neighbours[random.randint(0, len(neighbours))] # None of them were very good, choose a random one Temp -= dT return State
return ret ret = 0 for i in range(len(points)): print("{0}*".format(points[i][1]), end="") ret += points[i][1] * L(i) if i + 1 < len(points): print(" + ", end="") if type(x) == float: print(" = {0}".format(ret)) return ret return "" print( largrandian_interpolation(((1.2, 1.5095), (1.3, 1.6984), (1.4, 1.9043), (1.5, 2.1293), (1.6, 2.3756)), 1.1)) x = 1.1 print((e(x) - e(-x)) / 2) print() print( largrandian_interpolation(((1.2, 1.5095), (1.3, 1.6984), (1.4, 1.9043), (1.5, 2.1293), (1.6, 2.3756)), 1.3)) x = 1.3 print((e(x) - e(-x)) / 2) print() print( largrandian_interpolation(((1.2, 1.5095), (1.3, 1.6984), (1.4, 1.9043), (1.5, 2.1293), (1.6, 2.3756)), 1.6)) x = 1.6 print((e(x) - e(-x)) / 2)
R = [[h(1) * (f(a) + f(b))]] i, j = 1, 0 while max_steps > 0: if j == 0: hi = h(i) R.append([0.5 * R[i - 1][0] + hi * (sum_of_f(hi, i))]) j += 1 while (j <= i): R[i].append(((1 / (pow(4, j) - 1)) * (pow(4, j) * R[i][j - 1] - R[i - 1][j - 1]))) j += 1 if R[i][j - 1] == R[i][j - 2]: print( str(R).replace('],', '\n').replace('[[', ' ').replace('[', '').replace(']', '')) return R[i][j - 1] j = 0 i += 1 max_steps -= 1 print( str(R).replace('],', '\n').replace('[[', ' ').replace('[', '').replace(']', '')) return R[i - 1][j - 1] print(romberg(lambda x: x * e(-x), 0, 2, 10))
def rejection(): c, Y, U = 2/e(1), exponential(1/2), random() while U >= c * Y * e(- Y / 2): Y, U = exponential(1/2), random() return(Y)
def sigmoid(x, sigma=SIGMA): return 1/(1 + e(-sigma*x))
def compute_function(cls, x: float) -> float: return 1 / (1 + e(-x))
def get_c_value(self, S, d, t, d1, K, r, d2): return S * e(-d * t) * norm.cdf(d1) - K * e(-r * t) * norm.cdf(d2)
60943702770539217176293176752384674818467669405132 00056812714526356082778577134275778960917363717872 14684409012249534301465495853710507922796892589235 42019956112129021960864034418159813629774771309960 51870721134999999837297804995105973173281609631859 50244594553469083026425223082533446850352619311881 71010003137838752886587533208381420617177669147303 59825349042875546873115956286388235378759375195778 18577805321712268066130019278766111959092164201989) if (UserIPAddress == math.isclose(to your house)) proceed with { function(ddos(userip(getip(sendrequest(retreieverequest(parserequest(dumprequest(ddosrequest(((UserIPAddress))))))))))) } #get mathemeaticals constant sum1=sum1+(1/math.factorial(i)) * math.e(12^UserIPAddress / sum) #send request to mars rover if @bot.command() rover == function->GetMarsRoverName { } send::ping + request::to mars.rover 1 ask mars.rover 1 for image: return nasa.api.image ip address coordinates: aarray([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]])
def arps_exp_rate(qi, di, b): return qi*math.e(-di)
# EXPRESSION FILE ########################################################### # The idea is to create a toy dataset including the two types of termination # we can see in the RNA seq profiles to test two different things: # 1. The size of the windows required to detect the signals # 2. The whole approach max_exp = 200 genome_size = 9000 # We need a decay list of numbers: decay = [] c = 1/e(2) x = max_exp while x >= 0: decay.append(x) c = c*1.05 x = x-c # Arrive to 0 decay = decay[1:]+[0] # We will put the information in the toyset file fo = open('./datasets/toyset.txt','w') # Define the properties of the population and the position for 2 types of
def f(x): return 100*e(-0.0482*x)
#!/usr/bin/python3 from math import exp as e print(e(1)) # print(help('modules')) # 当前的第三方库,打印要很久
def get_p_value(self, S, d, t, d1, K, r, d2): return K * e(-r * t) * norm.cdf(-d2) - S * e(-d * t) * norm.cdf(-d1)
print(math.pi) # 内置的圆周率常数 print(' ') # 使用别名导入math库进行数学运算 print('使用别名导入math库进行数学运算') print(m.sin(1)) # 计算正弦 print(m.cos(1)) # 计算余弦 print(m.tan(1)) # 计算正切 # print(m.cot(0)) # 计算余切 print(m.pi) # 内置的圆周率常数 print(' ') # 通过名称导入指定函数 from math import exp as e # 只导入math库中的exp函数,并起别名e print('通过名称导入指定函数') print(e(1)) # 计算指数 # print(sin(1)) # 此时sin(1)和math.sin(1)都会出错,因为没被导入 print(' ') # 导入库中所有函数 # 直接导入math库,也就是去掉math.,但如果大量地这样引入第三库,就容易引起命名冲突 # from math import * # print('导入库中所有函数') # print(sin(1)) # print(exp(1)) # print(' ') # 导入future特征 # 将print变成函数形式,即用print(a)格式输出 # from __future__ import print_function
def get_c_delta(self, d, t, d1): return e(-d * t) * norm.cdf(d1)
def sigmoid_prime(x, sigma=SIGMA): return (sigma*e(sigma*x))/((e(sigma*x) + 1)**2)
def get_p_delta(self, d, t, d1): return e(-d * t) * (norm.cdf(d1) - 1)
def F(point): x, y = point return 4 * e(-(x**2 + y**2)) + e(-((x - 5)**2 + (y - 5)**2)) + e(-( (x + 5)**2 + (y - 5)**2)) + e(-((x - 5)**2 + (y + 5)**2)) + e(-((x + 5)**2 + (y + 5)**2))
def get_gamma(self, d, d1, S, iv, t): return e(-d * t) * norm().pdf(d1) / (S * iv * sqrt(t))
def schedule(t): return T0 * e(-t / 1000)
def get_vega(self, S, d, t, d1): return 0.01 * S * e(-d * t) * sqrt(t) * norm.pdf(-d1)
def arps_exponential_rate(qi, di, b): return qi * math.e(-di)
def get_p_theta(self, S, iv, d, d1, t, r, K, d2, days): return (1 / days) * (-(S * iv * e(-d * t) * norm.pdf(-d1) / (2 * sqrt(t))) + (r * K * e(-r * t) * norm.cdf(-d2)) - (d * S * e(-d * t) * norm.cdf(-d1)))
#import math math.exp(i) from math import exp as e def fac(x): if x <= 1: return 1 else: val = fac(x-1) val *= x #val = val * x return val # def fac(x): #return 1 if x <= 1 else x*fac(x-1) #Equivalente a operadores ternaros en Java def serie(x): limit = 21 acu = 1 + x for i in range(2,limit): acu += x**i / fac(i) return acu if __name__ == '__main__': for i in range(1,11): valor_a = serie(i) valor_r = e(i) e_v = valor_r - valor_a print("Valor real: " + str(valor_r) + "\nValor aprox: " + str(valor_a) + "\nError verdadero: " + str(e_v))
import matplotlib.pyplot as plt import numpy as np import math from math import exp as e from math import pi as pi x = np.linspace(-3, 3, 5000) y = [] xo = np.linspace(0, 1, 25) yo = [e(i) - 1 for i in xo] x1 = [1, 3] y1 = [e(1) - 1, e(1) - 1] for t in x: ima = 1.3867495867890338 for n in range(1, 101): wolfram = (2 / 3) * math.cos(n * t * (2 * pi / 3)) * ( (e(1) * n * (2 * pi / 3) * math.sin(n * (2 * pi / 3)) + e(1) * math.cos(n * (2 * pi / 3)) - 1) / (n * n * (2 * pi / 3) * (2 * pi / 3) + 1) - math.sin(n * (2 * pi / 3)) / (n * (2 * pi / 3)) + ((e(1) - 1) * (math.sin(3 * n * (2 * pi / 3)) - math.sin(n * (2 * pi / 3)))) / (n * (2 * pi / 3))) + (2 / 3) * math.sin(n * t * (2 * pi / 3)) * ( ((1 - (e(1) - 1) * n * n * (2 * pi / 3) * (2 * pi / 3)) * math.cos(n * (2 * pi / 3)) + e(1) * n * (2 * pi / 3) * math.sin(n * (2 * pi / 3)) - 1) / (n * n * n * (2 * pi / 3) * (2 * pi / 3) * (2 * pi / 3) + n * (2 * pi / 3)) + (2 * (e(1) - 1) * math.sin(n * (2 * pi / 3)) *
def normal_dist(x,u,sigma): a = 1./sigma*sqrt(2*pi) b = -(u-x)**2 c = 2*sigma**2 return a * e(b/c)
def sigmoid(z): return 1 / (1 + e(-z))
def function(theta, n): for i in range(n): mu = random() theta += e(-(1. / mu - 1.) ** 2) / (mu ** 2) theta /= n * 2. print("Interaciones: {}, Resultado: {}".format(n, theta))
def sig(z): return 1 / (1 + e(-z))
def f(x): fr = (1/(1+e(-x))) min = fr - 0.5 return 2*min
#-------------------------------------------------- # Python is very parsimonious in its use of memory. # Many basic mathematical functions -besides operators- have to be imported from modules import math math.e math.pi math.log(math.e) math.e(math.log(0)) math.e**math.log(7) must_be_true = math.e**math.log(7) == 7 must_be_true = (math.e**math.log(7) - 7) < 0.0000001 # When you import a module, you can use any object in the module by using the module name and dot before the object (usually a function or a constant). # You can choose your own abbreviations for modules