def random_walk(npc): randomX = math.random() * (npc.MaxRoam.X * Constants.TILE_SIZE) randomY = math.random() * (npc.MaxRoam.Y * Constants.TILE_SIZE) signx = -1 if math.random() < .5 else 1 signy = -1 if math.random() < .5 else 1 npc.GoTo(Vector(randomX * signX, randomY * signY))
def Maison(ID): typeShare = int(math.random()*3)+1 cagnotte tauxConso = int(math.random()*5001) + 7000 # taux à l'année entre 7 000 et 12 000 kWh initProduct = int(math.random()*5001) + 5000 #production par an entre 5 000 et 10 000 kWh energie = (initProduct - tauxConso )/365.25
def pointMutate(genome): step = genome.mutationRates["step"] for i in range(genome.genes): gene = genome.genes[i] if math.random() < PerturbChance: gene.weight = gene.weight + math.random() * step * 2 - step else: gene.weight = math.random() * 4 - 2
def Economics(): ecoPb = False #boucle qui lance un problème éco aléatoirement while eco == false: proba = math.random() if proba > 0.90: ecoPb = True typePb = int(math.random()*2)+1 #1 : offre qui augmente, prix qui baisse #2 : offre qui diminue, prix qui augmente if typePb == 1: #fonction de market qui augmente le prix else:
def get_sample(ref, radius, t_diff): rand_angle = 2 * math.pi * random.random() samp_rad = radius * random.random() x = samp_rad * math.cos(rand_angle) y = samp_rad * math.sin(rand_angle) t = ref.t + t_diff * (2 * math.random() - 1) return STPoint(x, y, t)
def crossover(g1, g2): # Make sure g1 is the highest fitness genome if g2.fitness > g1.fitness: tempg = g1 g1 = g2 g2 = tempg child = newGenome() innovations2 = {} # for gene in g2.genes: for i in range(len(g2.genes)): gene = g2.genes[i] innovations2[gene.innovation] = gene for i in range(len(g1.genes)): gene1 = g1.genes[i] gene2 = innovations2[gene1.innovation] if gene2 != None and math.random(2) == 1 and gene2.enabled: # table.insert(child.genes, copyGene(gene2)) child.genes.append(copyGene(gene2)) else: # table.insert(child.genes, copyGene(gene1)) child.genes.append(copyGene(gene1)) child.maxneuron = math.max(g1.maxneuron, g2.maxneuron) child.mutationRates = g1.mutationRates.copy() """ for mutation, rate in pairs(g1.mutationRates) do child.mutationRates[mutation] = rate """ return child
def linkMutate(genome, forceBias): neuron1 = randomNeuron(genome.genes, False) neuron2 = randomNeuron(genome.genes, True) newLink = newGene() if neuron1 <= inputs_count and neuron2 <= inputs_count: return if neuron2 <= inputs_count: # Swap output and input temp = neuron1 neuron1 = neuron2 neuron2 = temp newLink.into = neuron1 newLink.out = neuron2 if forceBias: newLink.into = inputs_count if containsLink(genome.genes, newLink): return newLink.innovation = newInnovation() newLink.weight = math.random() * 4 - 2 genome.genes.append(newLink)
def pan_z_instant(self,z): if self.shake_amount > 0: z += (math.random() - 0.5) * self.shake_amount self.shake_amount *= self.shake_dim if self.shake_amount < 10: self.shake_amount = 0 if GetPlayerId(GetLocalPlayer()) in self.players: SetCameraField(CAMERA_FIELD_ZOFFSET, z, - 0.01) SetCameraField(CAMERA_FIELD_ZOFFSET, z, 0.01)
def new_game(cls, user, card): """Creates and returns a new game""" game = Game(user=user, cards=list(math.random(range(1, 11))), game_over=False) game.put() return game
def generate(self): count, product = 0, 1.0 elambda = math.exp(-self.mean) while product > elambda: product *= math.random() count += 1 return count - 1
def enableDisableMutate(genome, enable): candidates = [] for gene in genome.genes: if not gene.enabled == enable: candidates.append(gene) if len(candidates) == 0: return gene = candidates[math.random(1, len(candidates))] gene.enabled = not gene.enabled
def on_period(self): z = self.z if self.shake_amount > 0: z += (math.random() - 0.5) * self.shake_amount self.shake_amount *= self.shake_dim if self.shake_amount < 10: self.shake_amount = 0 if GetPlayerId(GetLocalPlayer()) in self.players and self.lock_z: if 'z' not in self.transitions or not self.transitions['z'].active: z += GetCameraField(CAMERA_FIELD_ZOFFSET) - GetCameraTargetPositionZ() SetCameraField(CAMERA_FIELD_ZOFFSET, z, - 0.01) SetCameraField(CAMERA_FIELD_ZOFFSET, z, 0.01)
def translation_circuit(signal, regions, lights = 0, board = False): # r = num_lights if num_lights < r vals = [len(signals)][r] # TODO: This is where the signal gets filtered into interpretable data # filtered_signal = [] # TODO: This is where the filtered signal gets converted into RGB values if board: for i in range(1, r+1, type=float): return [math.random(255) for val in vals]# placeholder for random values
def translation_rgb(signal, regions, lights = 0, grad_type = 0, board = False): rgb_vals = [r][3] # TODO: This is where the signal gets filtered into interpretable data # filtered_signal = [] # TODO: This is where the filtered signal gets converted into RGB values if return [[math.random(255) for val in vals] for vals in rgb_vals]# placeholder for random values def output_lights(light_vals): return # TODO?
def calculateSpawn(self): if self.TIME > 25: spawnLevel = int((self.roadPop / 10) * math.random()) elif self.TIME == 25: spawnLevel = self.roadPop / 10 elif self.TIME < 25: spawnLevel = self.roadPop / 10 if self.TIME > 15 and self.TIME < 25 or self.TIME > 60 and self.TIME < 75: #use rush hour multiplier return spawnLevel * self.RH_multiplier else: return spawnLevel
def atencionCliente(self): catidad = 0 self.reloj = self.reloj + 1 self.eventos = self.eventos + 1 self.cajeros = False self.agregarEvento() self.cantidad = int(math.random() * 3000) + 100 if self.dinero < self.cantidad: self.abastecimientoCajero() else: self.dinero = self.cantidad self.satisfechos = self.satisfechos + 1 self.salidaCliente() if (self.fila > 0): self.fila = self.fila - 1
def submit(self): m = hashlib.sha256() m.update(math.random(10000)) self.digest = self.hash.hexdigest() with self.client.post( "/api/v1/submit", { "jsonrpc": "2.0", "id": 0, "method": "submit", "params": {"checksum": self.digest}, }, catch_response=True ) as response: if response.status_code != 200: response.failure("The stamp response was an eror")
def estrai(lProb): pTotVincenti = sum(lProb) numRnd = m.random() # numRnd = 1e-9 # print "numRnd ", numRnd if numRnd < pTotVincenti: cumulata = lProb[0] i = 1 while i < len(lProb): # print "cumul ", cumulata, " premio ", i if numRnd < cumulata: return i - 1 else: cumulata += lProb[i] i += 1 return i - 1 else: return len(lProb)
def mutate(genome): for mutation, rate in genome.mutationRates.items(): if math.random(1, 2) == 1: genome.mutationRates[mutation] = 0.95 * rate else: genome.mutationRates[mutation] = 1.05263 * rate if math.random() < genome.mutationRates["connections"]: pointMutate(genome) p = genome.mutationRates["link"] while p > 0: if math.random() < p : linkMutate(genome, False) p = p - 1 p = genome.mutationRates["bias"] while p > 0: if math.random() < p: linkMutate(genome, True) p = p - 1 p = genome.mutationRates["node"] while p > 0 : if math.random() < p: nodeMutate(genome) p = p - 1 p = genome.mutationRates["enable"] while p > 0: if math.random() < p: enableDisableMutate(genome, True) p = p - 1 p = genome.mutationRates["disable"] while p > 0: if math.random() < p: enableDisableMutate(genome, False) p = p - 1
def nodeMutate(genome): if len(genome.genes) == 0: return genome.maxneuron = genome.maxneuron + 1 gene = genome.genes[math.random(1, len(genome.genes) )] if not gene.enabled: return gene.enabled = False gene1 = copyGene(gene) gene1.out = genome.maxneuron gene1.weight = 1.0 gene1.innovation = newInnovation() gene1.enabled = True genome.genes.append(gene1) gene2 = copyGene(gene) gene2.into = genome.maxneuron gene2.innovation = newInnovation() gene2.enabled = True genome.genes.append(gene2)
def randomNeuron(genes, nonInput): neurons = [False] * len(inputs_count) if not nonInput: for i in range(inputs_count): neurons[i] = True for i in range(inputs_count): neurons[MaxNodes + i] = True for i in range(len(genes)): if not nonInput or genes[i].into > inputs_count: neurons[genes[i].into] = True if not nonInput or genes[i].out > inputs_count: neurons[genes[i].out] = True count = inputs_count """ count = 0 for _, _ in pairs(neurons) do count = count + 1 """ n = math.random(1, count) for k, v in neurons: n = n - 1 if n == 0: return k """ for k, v in pairs(neurons) do n = n - 1 if n == 0 then return k """ return 0
def randomElement(l): s = len(l) return l[s * math.random()]
def random(self, a): return math.random() * (a or 1)
def stimuli(): stimuli_list = [] for i in range(math.random(100,300)): beta = math.random(0.05, 0.15) n = math.random(int(10e6), int(10e8)) areas_list.append(Stimulus(beta, n))
def areas(): areas_list = [] for i in range(math.random(100,300)): beta = math.random(0.05, 0.15) n = math.random(int(10e6), int(10e8)) areas_list.append(Area(beta, n, math.sqrt(n)))
return connectome(areas, stimuli) @pytest.fixture def areas(): areas_list = [] for i in range(math.random(100,300)): beta = math.random(0.05, 0.15) n = math.random(int(10e6), int(10e8)) areas_list.append(Area(beta, n, math.sqrt(n))) return areas_list @pytest.fixture def area(request): beta, n, k = request.param if beta is None: beta = math.random(0.05, 0.15) if n is None: n = math.random(int(10e6), int(10e8)) if k is None: k = math.sqrt(n) return Area(beta, n, k) @pytest.fixture def stimuli(): stimuli_list = [] for i in range(math.random(100,300)): beta = math.random(0.05, 0.15) n = math.random(int(10e6), int(10e8)) areas_list.append(Stimulus(beta, n)) return stimuli_list
import math if (math.random() < 0.5 ): print("Heads") else: print("Tails")
def setSeed(self,val=None): self.z = self.seed = (math.random()*self.m if val == None else val) >> 0
def breedChild(species): child = [] if math.random() < CrossoverChance:
def getApiCid(): return math.floor(1e9 * math.random())
Python 3.7.1rc1 (v3.7.1rc1:2064bcf6ce, Sep 26 2018, 14:21:39) [MSC v.1914 32 bit (Intel)] on win32 Type "help", "copyright", "credits" or "license()" for more information. >>> import math >>> math.fmod(37,5) 2.0 >>> math.random(5.0, 20.0) Traceback (most recent call last): File "<pyshell#2>", line 2, in <module> math.random(5.0, 20.0) AttributeError: module 'math' has no attribute 'random' >>> import random >>> random.random(5.0, 20.0) Traceback (most recent call last): File "<pyshell#4>", line 1, in <module> random.random(5.0, 20.0) TypeError: random() takes no arguments (2 given) >>> random.random(5.0,20.0) Traceback (most recent call last): File "<pyshell#5>", line 1, in <module> random.random(5.0,20.0) TypeError: random() takes no arguments (2 given) >>> random.randint(5,20) 18 >>>
def random_vec(self): vector = Quat(0, 0, 0, 0) while len(vector) >= 1: vector = 2 * Quat(0, random(), random(), random()) - Quat(0, 1, 1, 1) return vector
def getRandomColor(): letters = '0123456789ABCDEF' color = '#' for i in range(6): color += letters[math.floor(math.random() * 16)] return color
def api(request): return HttpResponse('<h1>You can find your API key here: '+ math.random(10,100)+'</h1>')