cbar_091_0 = pl.colorbar(surf_091_0) cbar_091_0.ax.set_ylabel(r'$\mathcal{A}^{(0)}_{[9,1]}\,\,\,[zJ]$', size = 14) cbar_091_0.add_lines(CS_091_0) cbar_290_0 = pl.colorbar(surf_290_0) cbar_290_0.ax.set_ylabel(r'$\mathcal{A}^{(0)}_{[29,0]}\,\,\,[zJ]$', size = 14) cbar_290_0.add_lines(CS_290_0) cset_065_0 = ax.contour(1e9*X,Y,1e21*A0_065_theta,zdir='y',offset = -0.3,cmap = cm.Blues) cset_091_0 = ax.contour(1e9*X,Y,1e21*A0_091_theta,zdir='y',offset = -0.3,cmap = cm.Greens) cset_290_0 = ax.contour(1e9*X,Y,1e21*A0_290_theta,zdir='y',offset = -0.3,cmap = cm.Reds) #man_loc = [(.1,.1),(.2,.2),(.3,.3),(.4,.4)] yticks([0, pi/8, pi/6, pi/4, pi/3, pi/2], ['$0$', r'$\frac{\pi}{8}$', r'$\frac{\pi}{6}$', r'$\frac{\pi}{4}$', r'$\frac{\pi}{3}$', r'$\frac{\pi}{2}$']) #clabel(CS, inline =1,fmt = '%1.1f', fontsize = 18,color = 'k', manual = man_loc) ax.grid(on = True) ax.set_xlabel(r'$\rm{separation}\,\,\,\ell\,\,[nm]$', size = 18) ax.set_ylabel(r'$\rm{angle}\,\,\,\theta\,\,[radians]$', size = 18) ax.set_zlabel(r'$\mathcal{A}^{(0)}\,\,[zJ]$',size = 18 ,rotation = 'horizontal' ) pl.title(r'$\rm{\mathcal{A}^{(0)}\, for \, [6,5],[9,1],\,and\,[29,0]\, in\,water}$', size = 21) ax.view_init(elev = 10, azim = 65) savefig('plots/A0_65_91_290.png')#, dpi = 300) show() ##### A_2 PLOTS ###### fig = figure() ax = fig.gca(projection = '3d') surf_065 = ax.plot_surface(1e9*X,Y,1e21*A2_065_theta, rstride = 5, cstride =5,alpha=0.7,cmap=cm.Blues, linewidth = 0.05, antialiased = True, shade = False)# True)#, cmap = hot() surf_091 = ax.plot_surface(1e9*X,Y,1e21*A2_091_theta, rstride = 5,
def drawmatrix_channels(in_m, channel_names=None, fig=None, x_tick_rot=0, size=None, cmap=plt.cm.RdBu_r, colorbar=True, color_anchor=None, title=None): r"""Creates a lower-triangle of the matrix of an nxn set of values. This is the typical format to show a symmetrical bivariate quantity (such as correlation or coherence between two different ROIs). Parameters ---------- in_m: nxn array with values of relationships between two sets of rois or channels channel_names (optional): list of strings with the labels to be applied to the channels in the input. Defaults to '0','1','2', etc. fig (optional): a matplotlib figure cmap (optional): a matplotlib colormap to be used for displaying the values of the connections on the graph title (optional): string to title the figure (can be like '$\alpha$') color_anchor (optional): determine the mapping from values to colormap if None, min and max of colormap correspond to min and max of in_m if 0, min and max of colormap correspond to max of abs(in_m) if (a,b), min and max of colormap correspond to (a,b) Returns ------- fig: a figure object """ N = in_m.shape[0] ind = np.arange(N) # the evenly spaced plot indices def channel_formatter(x, pos=None): thisind = np.clip(int(x), 0, N - 1) return channel_names[thisind] if fig is None: fig = plt.figure() if size is not None: fig.set_figwidth(size[0]) fig.set_figheight(size[1]) w = fig.get_figwidth() h = fig.get_figheight() ax_im = fig.add_subplot(1, 1, 1) # If you want to draw the colorbar: if colorbar: divider = make_axes_locatable(ax_im) ax_cb = divider.new_vertical(size="10%", pad=0.1, pack_start=True) fig.add_axes(ax_cb) # Make a copy of the input, so that you don't make changes to the original # data provided m = in_m.copy() # Null the upper triangle, so that you don't get the redundant and the # diagonal values: idx_null = triu_indices(m.shape[0]) m[idx_null] = np.nan # Extract the minimum and maximum values for scaling of the # colormap/colorbar: max_val = np.nanmax(m) min_val = np.nanmin(m) if color_anchor is None: color_min = min_val color_max = max_val elif color_anchor == 0: bound = max(abs(max_val), abs(min_val)) color_min = -bound color_max = bound else: color_min = color_anchor[0] color_max = color_anchor[1] # The call to imshow produces the matrix plot: im = ax_im.imshow(m, origin='upper', interpolation='nearest', vmin=color_min, vmax=color_max, cmap=cmap) # Formatting: ax = ax_im ax.grid(True) # Label each of the cells with the row and the column: if channel_names is not None: for i in range(0, m.shape[0]): if i < (m.shape[0] - 1): ax.text(i - 0.3, i, channel_names[i], rotation=x_tick_rot) if i > 0: ax.text(-1, i + 0.3, channel_names[i], horizontalalignment='right') ax.set_axis_off() ax.set_xticks(np.arange(N)) ax.xaxis.set_major_formatter(ticker.FuncFormatter(channel_formatter)) fig.autofmt_xdate(rotation=x_tick_rot) ax.set_yticks(np.arange(N)) ax.set_yticklabels(channel_names) ax.set_ybound([-0.5, N - 0.5]) ax.set_xbound([-0.5, N - 1.5]) # Make the tick-marks invisible: for line in ax.xaxis.get_ticklines(): line.set_markeredgewidth(0) for line in ax.yaxis.get_ticklines(): line.set_markeredgewidth(0) ax.set_axis_off() if title is not None: ax.set_title(title) # The following produces the colorbar and sets the ticks if colorbar: # Set the ticks - if 0 is in the interval of values, set that, as well # as the maximal and minimal values: if min_val < 0: ticks = [color_min, min_val, 0, max_val, color_max] # Otherwise - only set the minimal and maximal value: else: ticks = [color_min, min_val, max_val, color_max] # This makes the colorbar: cb = fig.colorbar(im, cax=ax_cb, orientation='horizontal', cmap=cmap, norm=im.norm, boundaries=np.linspace(color_min, color_max, 256), ticks=ticks, format='%.2f') # Set the current figure active axis to be the top-one, which is the one # most likely to be operated on by users later on fig.sca(ax) return fig