Beispiel #1
0
    def _normalization(image):

        assert image.__class__ == numpy.ndarray

        row, col = image.shape

        #stdImag standardized image
        stdImg = numpy.zeros((row, col))
        """
            What image.sum() do is the same as the following code 
        but more faster than this.

        for i in xrange(self.Row):
            for j in xrange(self.Col):
                sigma += image[i][j]
        """
        #sigma = image.sum()

        meanVal = image.mean()

        stdValue = image.std()
        if stdValue == 0:
            stdValue = 1

        stdImg = (image - meanVal) / stdValue

        return stdImg
Beispiel #2
0
    def _normalization(image):

        assert image.__class__ == numpy.ndarray

        row, col = image.shape

        #stdImag standardized image
        stdImg = numpy.zeros((row, col))
        """
            What image.sum() do is the same as the following code 
        but more faster than this.

        for i in xrange(self.Row):
            for j in xrange(self.Col):
                sigma += image[i][j]
        """
        #sigma = image.sum()

        meanVal = image.mean()

        stdValue = image.std()
        if stdValue == 0:
            stdValue = 1

        stdImg = (image - meanVal) / stdValue

        return stdImg
Beispiel #3
0
    def Normimg(image):
        row, col = image.shape
        img_new = np.zeros((row, col))
        meanVal = image.mean()
        stdValue = image.std()
        if stdValue == 0:
            stdValue = 1

        img_new = (image - meanVal) / stdValue

        return img_new
    def _normalization(image):
        assert image.__class__ == numpy.ndarray

        row, col = image.shape
        stdImg = numpy.zeros((row, col))
        meanVal = image.mean()
        stdValue = image.std()

        if stdValue == 0:
            stdValue = 1

        stdImg = (image - meanVal)/stdValue

        return stdImg