def central_limit_theorem(): y = [] n=100 for i in range(1000): r = expon.rvs(scale=1, size=n) rsum=np.sum(r) z=(rsum-n)/np.sqrt(n) y.append(z) plt.hist(y,color='grey') plt.savefig('central_limit_theorem.png')
def first_year(): X=sta.norm(loc=950, scale=20)#generate random data in normal distribution whose expectation is 950 and standard deviation is 20 wbread=[] for i in range(365): x=X.rvs(size=100) wbread.append(x[0])#get the random data for one day log(numpy.mean(wbread))#print mean value log(sta.skew(wbread))#print skew value plt.hist(wbread,color='grey') plt.savefig('first_year.png')
def second_year(): X=sta.norm(loc=950, scale=20)#generate random data in normal distribution whose expectation is 950 and standard deviation is 20 wbread=[] for i in range(365): x=X.rvs(size=100) wbread.append(max(x))#get the random data for one day log(numpy.mean(wbread))#print mean value log(sta.skew(wbread))#print skew value plt.hist(wbread,color='grey') plt.savefig('second_year.png')
def central_limit_theorem(): y = [] n=100 for i in range(1000): r = binom.rvs(n, 0.3) rsum=np.sum(r) z=(rsum-n*0.3)/np.sqrt(n*0.3*0.7) y.append(z) plt.hist(y,color='grey') plt.savefig('central_limit_theorem.png')