Beispiel #1
0
def example_image(graph, filename, layout='spring', edge_labels=False,
                  node_labels=False, show=False):
    """Generates example image with graph.

    Uses nx.draw_networkx_* methods, and matplotlib to draw and save the
    image.

    """
    # positions for all nodes
    pos = LAYOUT_DICT[layout](graph)

    # configure the image
    plt.figure(figsize=(2, 2))
    plt.axis('off')

    # draw all of the things!
    nx.draw_networkx_nodes(graph, pos, nodelist=graph.nodes(), node_color='r')
    nx.draw_networkx_edges(graph, pos, width=1.0, alpha=0.5, arrows=True)

    if node_labels:
        nlabels = {node: str(node) for node in graph.nodes()}
        nx.draw_networkx_labels(graph, pos, nlabels, font_size=16)

    if edge_labels:
        elabels = {edge: str(idx) for idx, edge in enumerate(graph.edges())}
        nx.draw_networkx_edge_labels(graph, pos, elabels)

    # place the file where it belongs
    path = os.path.join(os.environ['ERDOS_PATH'], "content/images", filename)
    plt.savefig(path)

    if show:
        plt.show()
Beispiel #2
0
 def f(self, **kwargs):
     kwargs['always_apply'] = True
     print(kwargs)
     aug = self.tfms(**kwargs)
     #         Just copy all images, next step will be for continious albus
     image = aug(image=self.image.copy())['image']
     plt.figure(figsize=(10, 10))
     plt.imshow(image)
     plt.axis('off')
     plt.show()
Beispiel #3
0
 def plotMagnitudePhaseImage(self, image):
     mag = absolute(image).astype('float')
     phase = angle(image).astype('float')
     
     plt.subplot(211)
     plt.imshow(mag, cmap = cm.Greys_r)
     plt.axis('off')
     plt.subplot(212)
     plt.imshow(phase, cmap = cm.Greys_r)
     plt.axis('off')
     plt.show()
Beispiel #4
0
def Brightness_map(image, image_name):
	# map = (image[:, :, 0] + image[:, :, 1] + image[:, :, 2]) / 3
	map = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
	map = map.reshape(image.shape[0] * image.shape[1], 1)

	km = KMeans(n_clusters=16).fit(map)
	map = km.labels_.reshape(image.shape[0], image.shape[1])
	plt.imshow(map / map.max(), cmap='gray')
	plt.axis('off')
	plt.savefig(image_name + '_brightness_map')
	np.save(image_name + '_brightness_map.npy', map)
Beispiel #5
0
    def saveMagPhaseImage(self, image, filename):
        mag = absolute(image).astype('float')
        phase = angle(image).astype('float')

        plt.subplot(211)
        plt.imshow(mag, cmap=cm.Greys_r)
        plt.title('Magnitude')
        plt.axis('off')
        plt.subplot(212)
        plt.imshow(phase, cmap=cm.Greys_r)
        plt.title('Phase')
        plt.axis('off')
        plt.savefig(filename)
Beispiel #6
0
def texture_ID(image, map, image_name):

	for ch in range(3):
		channel = map[:, :, ch, :]
		channel = channel.reshape(image.shape[0] * image.shape[1], map.shape[-1])
		km = KMeans(n_clusters=64).fit(channel)
		T_channel = km.labels_.reshape(image.shape[0], image.shape[1])
		image[:, :, ch] = T_channel

	plt.imshow(image/image.max())
	plt.axis('off')
	plt.savefig(image_name + '_texture_map')
	np.save(image_name + '_texture_map.npy', image)
Beispiel #7
0
def save_plot(filter_bank, name):

	rows , cols = filter_bank.shape[0:2]

	plt.figure()
	sub = 1
	for row in range(rows):
		for col in range(cols):
			plt.subplot(rows, cols, sub)
			plt.imshow(filter_bank[row][col], cmap='gray')
			plt.axis('off')
			sub += 1

	plt.savefig(name)
Beispiel #8
0
def Color_map(image, image_name):

	for ch in range(3):
		channel = image[:, :, ch]
		channel = channel.reshape(image.shape[0] * image.shape[1], 1)
		km = KMeans(n_clusters=16).fit(channel)
		T_channel = km.labels_.reshape(image.shape[0], image.shape[1])
		image[:, :, ch] = T_channel

	plt.imshow(image / image.max())
	plt.axis('off')
	plt.savefig(image_name + '_color_map')

	np.save(image_name + '_color_map.npy', image)
Beispiel #9
0
def Gradient(image_name, map_name):
	mask_filters = Half_disk_masks(3, 8, plot=False)
	map = np.load(image_name + '_' + map_name + '_map.npy')
	# plt.imshow(map / map.max(), cmap='gray')
	# plt.savefig(image_name + '_map')
	gradients = []


	for row in range(3):
		for col in range(4):
			left_mask = mask_filters[row][2 * col]
			right_mask = mask_filters[row][2 * col + 1]
			chi_sqr_dist = map * 0
			k = map.max() + 1
			for bin in range(k):
				bin_chi_dist = map * 0
				temp = np.sign(-1 * (map - bin)) + 1

				g_i = cv2.filter2D(temp, -1, left_mask)
				h_i = cv2.filter2D(temp, -1, right_mask)

				num = np.square(h_i - g_i)
				denom = 1. / (g_i + h_i + 0.000005)
				bin_chi_dist = np.multiply(num, denom)


				# for x in range(temp.shape[0]):
				# 	for y in range(temp.shape[1]):
				# 		for z in range(temp.shape[2]):
				# 			if g_i[x][y][z] + h_i[x][y][z] != 0:
				# 				bin_chi_dist[x][y][z] = (g_i[x][y][z] - h_i[x][y][z]) ** 2 / (g_i[x][y][z] + h_i[x][y][z])


				chi_sqr_dist = chi_sqr_dist + bin_chi_dist / k

			gradients.append(chi_sqr_dist)

	gradient_map = np.mean(np.array(gradients), axis=0)

	if map_name == 'brightness':
		plt.imshow(gradient_map / gradient_map.max(), cmap='gray')
	else:
		plt.imshow(gradient_map / gradient_map.max())
	plt.axis('off')
	plt.savefig(image_name + '_' + map_name + '_gradient_map')
	np.save(image_name + '_' + map_name + '_gradient.npy', gradient_map)
Beispiel #10
0
def augmentation_visualize_and_save(config,
                                    images,
                                    images_names,
                                    path,
                                    times: int = 2):
    """
    Visualization of image enhancements.
    :param config: configuration from yaml file.
    :param images: images to be augmented.
    :param images_names: corresponding names of the images.
    :param path: the root where the augmented pictures will be saved.
    :param times: how many times each image getting augmented.
    :return:
    """

    rows = len(images)
    cols = times + 1
    for (index, image), name in zip(enumerate(images), images_names):
        plt.subplot(rows, cols, index * cols + 1)
        plt.axis('off')
        plt.title(name)
        _image = bgr2rgb_using_opencv(image)
        plt.imshow(_image)
        for col in range(1, cols):
            plt.subplot(rows, cols, index * cols + col + 1)
            plt.axis('off')
            plt.title("Augmented NO. " + str(col))
            # augment image
            augmented_image = augment_image_using_imgaug(_image, config)
            plt.imshow(augmented_image)

    # Save the full figure
    isExists = os.path.exists(path)
    if not isExists:
        os.makedirs(path)
    now_time = datetime.datetime.now().strftime('%Y%m%d_%H%M%S')
    savefig(os.path.join(path, "%s_Comp.png" % now_time), dpi=600)
    # Clear the current figure
    plt.clf()
    plt.cla()
    plt.close()
Beispiel #11
0
def example_pic():
    """Generate the example graph picture."""
    # create graph from edge list
    graph = nx.Graph([(0, 1), (0, 2), (1, 3), (3, 0)])

    # positions for all nodes
    pos = nx.spring_layout(graph)

    # each node is labaled by its own name
    labels = {node: str(node) for node in graph.node.keys()}

    # configure the image
    plt.figure(figsize=(2, 2))
    plt.axis('off')

    # draw all of the things!
    nx.draw_networkx_nodes(graph, pos, nodelist=[0, 1, 2, 3], node_color='r')
    nx.draw_networkx_edges(graph, pos, width=1.0, alpha=0.5)
    nx.draw_networkx_labels(graph, pos, labels, font_size=16)

    # place the file where it belongs
    path = os.path.join(os.environ['ERDOS_PATH'], "content/images", "nodes_edges_example.png")
    plt.savefig(path)
Beispiel #12
0
def example_image(graph,
                  filename,
                  layout='spring',
                  edge_labels=False,
                  node_labels=False,
                  show=False):
    """Generates example image with graph.

    Uses nx.draw_networkx_* methods, and matplotlib to draw and save the
    image.

    """
    # positions for all nodes
    pos = LAYOUT_DICT[layout](graph)

    # configure the image
    plt.figure(figsize=(2, 2))
    plt.axis('off')

    # draw all of the things!
    nx.draw_networkx_nodes(graph, pos, nodelist=graph.nodes(), node_color='r')
    nx.draw_networkx_edges(graph, pos, width=1.0, alpha=0.5, arrows=True)

    if node_labels:
        nlabels = {node: str(node) for node in graph.nodes()}
        nx.draw_networkx_labels(graph, pos, nlabels, font_size=16)

    if edge_labels:
        elabels = {edge: str(idx) for idx, edge in enumerate(graph.edges())}
        nx.draw_networkx_edge_labels(graph, pos, elabels)

    # place the file where it belongs
    path = os.path.join(os.environ['ERDOS_PATH'], "content/images", filename)
    plt.savefig(path)

    if show:
        plt.show()
Beispiel #13
0
    def saveMagPhaseImage2(self, image1, image2, filename):
        mag = absolute(image1).astype('float')
        phase = angle(image1).astype('float')
        mag2 = absolute(image2).astype('float')
        phase2 = angle(image2).astype('float')

        plt.subplot(221)
        plt.imshow(mag, cmap=cm.Greys_r)
        plt.title('Magnitude')
        plt.axis('off')
        plt.subplot(222)
        plt.imshow(phase, cmap=cm.Greys_r)
        plt.title('Phase')
        plt.axis('off')
        plt.subplot(223)
        plt.imshow(mag2, cmap=cm.Greys_r)
        plt.title('Magnitude')
        plt.axis('off')
        plt.subplot(224)
        plt.imshow(phase2, cmap=cm.Greys_r)
        plt.title('Phase')
        plt.axis('off')
        plt.savefig(filename)
Beispiel #14
0
    def saveWaterFatImage(self, filename):
        mag = np.absolute(self.water).astype('float')
        phase = np.angle(self.water).astype('float')
        mag2 = np.absolute(self.fat).astype('float')
        phase2 = np.angle(self.fat).astype('float')

        plt.subplot(221)
        plt.imshow(mag, cmap=cm.Greys_r)
        plt.title('Water Magnitude')
        plt.axis('off')
        plt.subplot(222)
        plt.imshow(phase, cmap=cm.Greys_r)
        plt.title('Water Phase')
        plt.axis('off')
        plt.subplot(223)
        plt.imshow(mag2, cmap=cm.Greys_r)
        plt.title('Fat Magnitude')
        plt.axis('off')
        plt.subplot(224)
        plt.imshow(phase2, cmap=cm.Greys_r)
        plt.title('Fat Phase')
        plt.axis('off')
        plt.show()
Beispiel #15
0
from IPython.display import display
from matplotlib.pylab import plt

data = pd.read_csv('house3.csv')
data['total_price'] = data['price'] * data['area'] / 10000

data_mean = data.groupby('district')['price'].mean()
data_count = data.groupby('district')['price'].count()

#柱状图分析各区的二手房的房价
plt.figure(figsize=(10, 6))
plt.rc('font', family='SimHei', size=13)
plt.title(u'各区域的平均二手房房价')
plt.xlabel(u'南京城区')
plt.ylabel(u'平均房价')
plt.bar(data_mean.index, data_count.values, color='g')
plt.show()

plt.figure(figsize=(10, 10))
plt.rc('font', family='SimHei', size=13)
explode = [0] * len(data_count)
explode[9] = 0.1
plt.pie(data_count,
        radius=2,
        autopct='%1.f%%',
        shadow=True,
        labels=data_mean.index,
        explode=explode)
plt.axis('equal')
plt.show()
Beispiel #16
0
# Calculate color percentages
groups = code.get_groups()
groups.sort()
counts = code.get_color_percentages(groups, vectors)

# Save to file
vectors.to_csv("color-vectors.csv")
counts.to_csv("color-percentages.csv")

# Generate 2d plot of all colors
plt.figure(figsize=(20, 12))
plt.scatter(vectors["x_dim"],
            vectors["y_dim"],
            c=vectors[[0, 1, 2]].to_numpy() / 255)
plt.title("CodeArt Color Map, All Groups")
plt.axis("off")
plt.savefig("colormap-2d.png")

# We'll also save a gif
import imageio

images = []

# Generate a plot for each color
for group in groups:
    colors = vectors[[0, 1, 2]] / 255

    # Alpha layer (between 0 and 1 for matplotlib) based on year
    colors['alphas'] = counts.loc[:, "%s-percent" % group].tolist()

    plt.figure(figsize=(20, 12))
Beispiel #17
0
text = ''
for i in range(0, len(f)):

    with open('D:\\视频\\tim专属文件\\yellow\\' + f[i], encoding='ansi') as x:
        for line in x.readlines():
            line = line.strip('\n')
            line = line.replace('<br /><br />  ', '')
            line = line.replace('<br />  ', '')
            line = line.replace(
                '<br /><br /><br /><br /><br /><br /><br /><br />', '')
            line = line.replace('<BR>  ', '')
            line = line.replace('<br /><br />', '')
            line = line.replace('<BR>', '')
            line = line.replace('nbsp', '')
            line = line.replace('br', '')
            print(0)
            text += ' '.join(jieba.cut(line))

a = Image.open('C:\\Users\\2271057973\\Pictures\\Saved Pictures\\太极.png')
mask = np.array(a)
wordcloud = WordCloud(font_path='./font/simhei.ttf',
                      background_color='white',
                      mask=mask,
                      max_font_size=120,
                      min_font_size=5).generate(text)
plt.imshow(wordcloud)
plt.axis('off')
plt.show()

wordcloud.to_file('C:\\Users\\2271057973\\Desktop\\2.png')
Beispiel #18
0
    def plot(self, **kwargs):
        """A wrapper function for plotting a NetworkX graph

        This function will draw a provided NetworkX graph using either the
        spring layout algorithm, or by the positions provided.

        Parameters
        ----------
        pos: dict, optional, default: networkx.drawing.layout.spring_layout
            A dictionary of the network's neurons as keys and their (x, y)
            coordinates as corresponding values.

        nodelist: list, optional, default: self.neurons
            Draw only specified neurons (nodes).

        node_size: int or list, optional, default: 300
            The size of the plotted neurons in the network.

        node_color: (color string, or array of floats), optional, default: 'r'
            Can either be a single color format string (default=’r’), or a
            sequence of colors with the same length as nodelist. If numeric
            values are specified they will be mapped to colors using the
            cmap and vmin, vmax parameters. See matplotlib.scatter for more
            details.

        cmap: Matplotlib colormap, optional, default: None
            Colormap for mapping intensities of nodes.

        alpha: float, optional, default: 1.0
            The transparency of the nodes.

        node_borders: (None, scalar, or sequence), optional, default: 'black'
            The color(s) of the node borders.

        edgelist: (collection of edge tuples), optional, default: self.connections
            Draw only specified edges. By default, the edges between all
            nodes will be drawn. If `[]` (i.e. empty list), then the edges
            between all nodes will be omitted from the figure.

        edge_alpha: float, optional, default is 1.0
            The transparency of the edges.

        edge_color: (color string, or array of floats), default: 'r'
            Can either be a single color format string, or a sequence of
            colors with the same length as edgelist. If numeric values are
            specified they will be mapped to colors using the edge_cmap and
            edge_vmin, edge_vmax parameters.

        edge_cmap : Matplotlib colormap, optional, default: None
            Colormap for mapping intensities of edges.

        width: float, optional, default: 1.0
            The width of the edges.

        labels: bool, optional, default: True
            If False, then omit node labels and edge labels.

        font_size: int, optional, default: 10
            The size of the font for text labels.

        figsize: tuple, optional, default: (20, 20)
            The size of the network figure to be plotted.

        savefig: bool, optional, default: False
            When True, the plotted figure will be saved to the current
            working directory, in PDF format, at the default (or specified)
            DPI.

        dpi: int, optional, default: 600
            The amount of dots per inch to use when saving the figure. In
            accordance with Nature's guidelines, the default is 600.
            Source: https://www.nature.com/nature/for-authors/final-submission

        title: str, optional, default: None
            The title of the plotted graph/network.

        Returns
        -------
        pos: dict
            A dictionary of the network's neurons as keys and their (x, y)
            coordinates as corresponding values.
        """

        # Get positions for all nodes
        pos = kwargs.get("pos", None)
        if pos is None:
            print(
                "A neuron position dictionary was not provided! The spring_layout function will be used to plot the network.",
                file=sys.stderr)
            pos = nx.spring_layout(self.network, weight="weight")

        # Size of the plot
        plt.figure(figsize=kwargs.get("figsize", (20, 20)))

        # Nodes
        cmap = kwargs.get("cmap", None)
        alpha = kwargs.get("alpha", 1.0)
        node_size = kwargs.get("node_size", 600)
        nodelist = kwargs.get("nodelist", self.neurons)
        node_color = kwargs.get("node_color", 'r')
        node_borders = kwargs.get("node_borders", "black")
        nx.draw_networkx_nodes(self.network,
                               pos,
                               nodelist=nodelist,
                               alpha=alpha,
                               node_size=node_size,
                               cmap=cmap,
                               node_color=node_color,
                               edgecolors=node_borders)

        # Draw edges
        width = kwargs.get("width", 1.0)
        edge_alpha = kwargs.get("edge_alpha", 1.0)
        edge_color = kwargs.get("edge_color", 'r')
        edge_cmap = kwargs.get("edge_cmap", None)
        edgelist = kwargs.get("edgelist", self.connections)
        nx.draw_networkx_edges(self.network,
                               pos,
                               edgelist=edgelist,
                               alpha=edge_alpha,
                               width=width,
                               edge_color=edge_color,
                               edge_cmap=edge_cmap)

        # Draw labels
        if kwargs.get("labels", True):
            nx.draw_networkx_labels(self.network,
                                    pos,
                                    font_size=kwargs.get("font_size", 10))

        plt.title(kwargs.get("title", None))
        plt.axis("off")

        if kwargs.get("savefig", False):
            plt.savefig(kwargs.get("title", "my_neuron_network.pdf"),
                        format="pdf",
                        dpi=kwargs.get("dpi", 600))

        plt.show()

        return pos
Beispiel #19
0
    new_controller('example_configuration.cnf', 'example_controller.py',
                   'PIDAW', param)

    # Create a motor object for simulation
    motor = DC_Motor(configfile='model.cnf',
                     controlmodule='example_controller')

    # Simulate the system with an alternating step reference
    ref, u, x, y = motor.simulate(30, 'steps')

    # Visualize simulation
    t = np.array([ii * motor.h for ii in range(len(u[0, :]))])
    plt.figure(1)
    plt.step(t, u[0])
    limits = np.array(plt.axis()) * np.array([1., 1., 1.1, 1.1])
    plt.axis(limits)
    plt.title('Control signal(s)')

    plt.figure(2)
    plt.step(t, np.transpose(x))
    limits = np.array(plt.axis()) * np.array([1., 1., 1.1, 1.1])
    plt.axis(limits)
    plt.title('System states')

    plt.figure(3)
    plt.step(t, ref[0])
    plt.step(t, x[0])
    limits = np.array(plt.axis()) * np.array([1., 1., 1.1, 1.1])
    plt.axis(limits)
    plt.title('Theta and reference')
Beispiel #20
0
            y = [count[w] / tot for w in count]
            plt.plot(x, y, label="N={}".format(k))
    return x, y


def exact():
    W = Lea.fastMax(W0 + U, 0)
    for k in range(1, 21):
        if k % 5 == 0:
            plt.plot(W.support(), W.pmf(), label="k={}".format(k))
        W = Lea.fastMax(W + U, 0)
    return W.support(), W.pmf()


plt.figure()
plt.axis([0, 20, 0, 0.3])
plt.title("Exact")
xex, yex = exact()
plt.legend()
tikz_save('waiting_time_1.tex', figureheight='5cm', figurewidth='5cm')
plt.close()

plt.figure()
plt.axis([0, 20, 0, 0.3])
plt.title("Simulation")
xsim, ysim = simulate()
plt.legend()
tikz_save('waiting_time_2.tex', figureheight='5cm', figurewidth='5cm')
plt.close()

plt.figure()
Beispiel #21
0
        'sat_lim_min': -10
    }

    new_controller('example_configuration.cnf', 'example_controller.py', 'PIDAW', param)

    # Create a motor object for simulation
    motor = DC_Motor(configfile='model.cnf', controlmodule='example_controller')

    # Simulate the system with an alternating step reference 
    ref, u, x, y = motor.simulate(30, 'steps')

    # Visualize simulation
    t = np.array([ii * motor.h for ii in range(len(u[0,:]))])
    plt.figure(1);
    plt.step(t, u[0])
    limits = np.array(plt.axis())*np.array([1.,1.,1.1,1.1])
    plt.axis(limits)
    plt.title('Control signal(s)')

    plt.figure(2);
    plt.step(t, np.transpose(x))
    limits = np.array(plt.axis())*np.array([1.,1.,1.1,1.1])
    plt.axis(limits)
    plt.title('System states')

    plt.figure(3);
    plt.step(t, ref[0])
    plt.step(t, x[0])
    limits = np.array(plt.axis())*np.array([1.,1.,1.1,1.1])
    plt.axis(limits)
    plt.title('Theta and reference')