def exponentielle(): debut = -1 fin = 4 pas = 0.1 x = np.arange(debut, fin, pas) f = np.exp(x) plt.plot(x, f) lx = 'e = ' + str(np.exp(1)) plt.xlabel(lx) plt.ylabel('f(x) = exp(x)') plt.tile('Fct exponentielle') plt.show()
def nxmx3(m): sh = m.shape m2 = m.copy() # working copy, might chance assert (len(sh) == 2 or len(sh) == 3) if len(sh) == 3: if sh[2] == 3: # matrix is already mxnx3 return m2 else: # matrix is MxNxD with D!=3, best we can do: m2 = pylab.mean(m2, 2) # here, m2 is MxN... return pylab.tile(m2.reshape(sh[0], sh[1], 1), (1, 1, 3))
def feature_scale(M, normalize=False, dbscale=False, norm=False, bels=False): """ :: Perform mutually-orthogonal scaling operations, otherwise return identity: normalize [False] dbscale [False] norm [False] """ if not (normalize or dbscale or norm or bels): return M else: X = M.copy() # don't alter the original if norm: X = X / P.tile(P.sqrt((X * X).sum(0)), (X.shape[0], 1)) if normalize: X = _normalize(X) if dbscale or bels: X = P.log10(P.clip(X, 0.0001, X.max())) if dbscale: X = 20 * X return X
plt.ylabel("Runs Scored") plt.show(), plt.scatter(W, DOUB) plt.xlabel("Wins") plt.ylabel("Doubles hit") plt.show() obs = range(30) plt.scatter(Ypred, Wt) plt.xlabel("Predicted Wins") plt.ylabel("Observed Wins") plt.show() plt.hist(Residuals) plt.tile("Residuals Distribution", 16) plt.show() def average(my_list): sumall = sum(my_list) average = sumall / len(my_list) return average average = average(Residuals) print "Residuals mean = ",average variance = np.var(Residuals) print "Residuals Variance =",variance
plt.ylabel("Runs Scored") plt.show(), plt.scatter(W, DOUB) plt.xlabel("Wins") plt.ylabel("Doubles hit") plt.show() obs = range(30) plt.scatter(Ypred, Wt) plt.xlabel("Predicted Wins") plt.ylabel("Observed Wins") plt.show() plt.hist(Residuals) plt.tile("Residuals Distribution", 16) plt.show() def average(my_list): sumall = sum(my_list) average = sumall / len(my_list) return average average = average(Residuals) print "Residuals mean = ", average variance = np.var(Residuals) print "Residuals Variance =", variance
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2017-10-16 17:04:57 # @Author : Bob Liao # @Email : [email protected] # @Link : https://github.com/coderchaser # @Path : E:\Code\Python\sublimeText\hipython_cousera\matplotlib_.py import numpy as np from matplotlib import pyplot as plt from matplotlib import pylab as pb x=np.linspace(0,1) pb.tile('ss') pb.plot(np.sin(4*np.pi*x)*np.exp(-5*x),'bo') pb.show()