best_parameters= grid_search.best_params_ # Visualising the Training set results from matplotlib.colors import ListedColormap X_set, Y_set = X_train, Y_train X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.arraY([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.Ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(Y_set)): plt.scatter(X_set[Y_set == j, 0], X_set[Y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j) plt.title('Kernel SVM (Training set)') plt.xlabel('Age') plt.Ylabel('Estimated SalarY') plt.legend() plt.show() # Visualising the Test set results from matplotlib.colors import ListedColormap X_set, Y_set = X_test, Y_test X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01), np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01)) plt.contourf(X1, X2, classifier.predict(np.arraY([X1.ravel(), X2.ravel()]).T).reshape(X1.shape), alpha = 0.75, cmap = ListedColormap(('red', 'green'))) plt.xlim(X1.min(), X1.max()) plt.Ylim(X2.min(), X2.max()) for i, j in enumerate(np.unique(Y_set)): plt.scatter(X_set[Y_set == j, 0], X_set[Y_set == j, 1], c = ListedColormap(('red', 'green'))(i), label = j)
lin_reg=LinearRegression() lin_reg.fit(X,Y) #fitting polynomial regression to the dataset from sklearn.preprocessing import PolynomialFeatures poly_reg=PolynomialFeatures(degree=4) X_poly=poly_reg.fit_transform(X) lin_reg_2=LinearRegression() lin_reg_2.fit(X_poly,Y) #visualising thre linear rehgression result plt.scatter(X,Y,color='red') plt.plot(X,lin_reg.predict(X),color='blue') plt.title('Truth of Bluff(Linear Regression)') plt.Xlabel('Position level') plt.Ylabel('Salary') plt.show() #visualising the polynomial X_grid=np.arange(min(X),max(X),0.1) X_grid=X_grid.reshape((len(X_grid),1)) plt.scatter(X,Y,color='red') plt.plot(X,lin_reg_2.predict(poly_reg.fit_transform(X)),color='blue') plt.title('Truth of Bluff(Polynomial Regression)') plt.Xlabel('Position level') plt.Ylabel('Salary') plt.show() #predict a new result with linear regression lin_reg.predict(6.5)
# -*- coding: utf-8 -*- """Estudo de caso: crescimento da população brasileira.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1eByi2L4I4BRl3Qdkaf4jsaYXUKoGt3j7 """ #Estudo de caso: crescimento da população brasileira #datasus import matplotlib.pyplot as plt dados = open("populacao-brasileira.csv").readlines() x = [] y = [] for i in range(len(dados)): if i != 0: linha = dados[i].split(";") x.append(int(linha[0])) y.append(int(linha[1])) plt.plot(x, y, color="k", linestyle="__") plt.bar(x, y, color='#e4e4e4') plt.title("Crescimento da população Brasileira 1980 a 2016") plt.xlabel("ano") plt.Ylabel("população x 100.000.000") #plt.show() plt.savefig("populaçao_brasileira.png", dpi=300)
import matplotlib.pyplot as plt import random n = int(input("Enter no. of student: ")) l = [int(i) for i in range(n)] m = [] for i in range(n): x = random.randint(40, 100) m.append(x) print(m) print(l) plt.plot(l, m) plt.title("Roll No. VS Marks ") plt.Xlabel("Roll No.") plt.Ylabel("Marks") plt.show()
def fit_linear(filename): my_file = open(filename) data = my_file.read() data = data.split('\n') mydata = data[0] datalist = mydata.split(' ') sum1 = len(datalist) for z in data: if 'x axis' in z: xlabel = z.split(":")[1] if 'y axis' in z: ylabel = z.split(":")[1] if sum1 == 4: (x, Y, Dx, dY) = check_column(data) a = funa(x, Y, dY) b = funb(Y, a, x, dY) chi = funchi2(Y, a, b, x, dY) print('a=', funa(x, Y, dY), '+-', funda(x, dY)) print('b=', funb(Y, a, x, dY), '+-', fundb(x, dY)) print('chi2=', funchi2(Y, a, b, x, dY)) print('chi2_reduced=', funchi2red(chi, x)) xx = np.array(x) YY = np.array(Y) lin = a * xx + b xarray = np.array(Dx) Yarray = np.array(dY) y = lin plt.errorbar(xx, YY, Yarray, xarray, fmt='none', ecolor='b') plt.plot(xx, Y, 'r') plt.xlabel(xlabel) plt.Ylabel(Ylabel) plt.show() plt.savefig('linear_fit.svg') my_file.close() else: (x, Y, Dx, dY) = check_rows(data) a = funa(x, Y, dY) b = funb(Y, a, x, dY) chi = funchi2(Y, a, b, x, dY) print('a=', funa(x, Y, dY), '+-', funda(x, dY)) print('b=', funb(Y, a, x, dY), '+-', fundb(x, dY)) print('chi2=', funchi2(Y, a, b, x, dY)) print('chi2_reduced=', funchi2red(chi, x)) xx = np.array(x) YY = np.array(Y) lin = a * xx + b xarray = np.array(Dx) Yarray = np.array(dY) y = lin plt.errorbar( xx, YY, Yarray, xarray, fmt='none', ecolor='b', ) plt.plot(xx, Y, 'r') plt.xlabel(xlabel) plt.Ylabel(Ylabel) plt.show() plt.savefig('linear_fit.svg') my_file.close()
# standardize the features sc = StandardScaler() data_std = sc.fit_transform(data) # X_train= X_train.reshape(-1,1) # standardize the features cov_mat = np.cov(data_std.T) eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) # calculate cumulative sum of explained variances tot = sum(eigen_vals) var_exp = [(i / tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) # plot explained variances plt.bar(range(1, 14), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1, 14), cum_var_exp, where='mid', label='cumulative explained variance') plt.Ylabel('Explained variance ratio') plt.xlabel('Principal component index') plt.legend(loc='best') plt.show()