def _draw_plot(lines: [str]): for line in lines: (label, points) = _parse_plot(line) x_axis = [x for [x, _] in points] y_axis = [y for [_, y] in points] plt.plot(x_axis, y_axis, label=label) plt.legend() plt.plasma() plt.ylabel('Membrane Potential (µV)') plt.xlabel('Time (ms)') plt.show()
#!/usr/bin/env python3 from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np lib = np.load("pca.npz") data = lib["data"] labels = lib["labels"] data_means = np.mean(data, axis=0) norm_data = data - data_means _, _, Vh = np.linalg.svd(norm_data) pca_data = np.matmul(norm_data, Vh[:3].T) fig = plt.figure() ax = Axes3D(fig) plt.plasma() ax.scatter(pca_data[:, 0], pca_data[:, 1], pca_data[:, 2], c=labels) ax.set_xlabel('U1') ax.set_ylabel('U2') ax.set_zlabel('U3') plt.title('PCA of Iris Dataset') plt.show()
e[it] = float(output_exit[it]) # t_n = [0]*len(t) y_max = max(y) y_min = min(y) y_max += 0.02 * (y_max - y_min) y_min -= 0.02 * (y_max - y_min) x = np.array(x) y = np.array(y) t = np.array(t) d = np.array(d) e = np.array(e) cmap = plt.plasma() f, ax = plt.subplots() ax.set_title("KL-Divergence (%s)" % len(d)) ax.set_ylabel('Privacy') ax.set_xlabel('Priority') points = ax.scatter(x, y, c=d, s=10, cmap=cmap) f.colorbar(points) plt.ylim((y_min, y_max)) plt.show() x1 = x.copy() y1 = y.copy() d1 = d.copy() standard_deviation = np.std(d1) print("KL-Divergence")
for it in range(len(output_exit) - 1): e[it] = int(output_exit[it]) y_max = max(y) y_min = min(y) y_max += 0.02 * (y_max - y_min) y_min -= 0.02 * (y_max - y_min) x = np.array(x) y = np.array(y) t = np.array(t) d = np.array(d) e = np.array(e) cmap = plt.plasma() f, ax = plt.subplots() ax.set_title("KL-Divergence (%s)" % len(d)) ax.set_ylabel('density') ax.set_xlabel('q_value') points = ax.scatter(x, y, c=d, s=10, cmap=cmap) f.colorbar(points) plt.ylim((y_min, y_max)) plt.show() x1 = x.copy() y1 = y.copy() d1 = d.copy() standard_deviation = np.std(d1) print("KL-Divergence: ")
fig = plt.figure() ax2 = fig.add_subplot(111, projection='3d') x1 = df.ix[0:, 'x1'] x2 = df.ix[0:, 'x2'] x3 = df.ix[0:, 'x3'] y = df.ix[0:, 'y'] if sys.argv[1:] == ['winter']: p = ax2.scatter(x1, x2, x3, c=y, cmap=plt.winter()) elif sys.argv[1:] == ['cool']: p = ax2.scatter(x1, x2, x3, c=y, cmap=plt.cool()) elif sys.argv[1:] == ['viridis']: p = ax2.scatter(x1, x2, x3, c=y, cmap=plt.viridis()) elif sys.argv[1:] == ['plasma']: p = ax2.scatter(x1, x2, x3, c=y, cmap=plt.plasma()) elif sys.argv[1:] == ['inferno']: p = ax2.scatter(x1, x2, x3, c=y, cmap=plt.inferno()) elif sys.argv[1:] == ['jet']: p = ax2.scatter(x1, x2, x3, c=y, cmap=plt.jet()) elif sys.argv[1:] == ['gist_ncar']: p = ax2.scatter(x1, x2, x3, c=y, cmap=plt.gist_ncar()) elif sys.argv[1:] == ['rainbow']: p = ax2.scatter(x1, x2, x3, c=y, cmap=plt.nipy_spectral()) else: p = ax2.scatter(x1, x2, x3, c=y, cmap=plt.nipy_spectral()) fig.colorbar(p) ax2.set_xlabel('X1') ax2.set_ylabel('X2')